chứng minh rằng giá trị các biểu thức sau k phụ thuộc vào biến x a)x(2x+1)-x^2(x+2)+(x^3-x+3) B)x(3x^2-x+5)-(2x^3+3x-16)-x(x^2-x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(2x+5\right)\left(3x+2\right)-\left(3x+5\right)\left(2x+3\right)\)
\(=6x^2+4x+15x+10-6x^2-9x-10x-15=-5\)
Vậy biểu thức ko phụ thuộc biến x
b, \(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
Vậy biểu thức ko phụ thuộc biến x
Mấy dạng này cứ nhân tung hết ra là xong :")
a.\(A=\left(2x+5\right)\left(3x+2\right)-\left(3x+5\right)\left(2x+3\right)\)
\(=2x\left(3x+2\right)+5\left(3x+2\right)-\left[3x\left(2x+3\right)+5\left(2x+3\right)\right]\)
\(=6x^2+4x+15x+10-6x^2-9x-10x-15\)
\(=\left(6x^2-6x^2\right)+\left(4x+15x-9x-10x\right)+\left(10-15\right)\)
\(=0+0-5\)
\(=-5\)
Vậy bt A khong phụ thuộc vào biến x
b.\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)
\(=0+0+0+3\)
\(=3\)
Vậy bt B khong phụ thuộc vào biến x
a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3
b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16
a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra 5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha
Chúc bạn học giỏi
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
\(A=x^2+6x+9-4x-1-2x-x^2=9\\ B=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ C=\left(3x+5-3x+5\right)^2=100\)
a: \(A=x^2+6x+9-4x-1-2x-x^2=8\)
b: \(B=2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
a) \(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
b) \(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=16\)