Các bạn giải gấp cho mình bài này nha . Mình đang cần rất gấp bạn nào giải đúng mình tick cho
Cho biểu thức
\(P=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Rút gọn P
b) Tìm giá trị của x để Q
= \(\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-2\right)}>=6\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{-x+x\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x\sqrt{x}-x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{\left(x-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\sqrt{x}-2\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
\(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\frac{\left(x+27\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\frac{x+27}{\sqrt{x}+3}\)
\(Q=\frac{x+27}{\sqrt{x}+3}\ge6\\ \Leftrightarrow\frac{x+27}{\sqrt{x}+3}-6\ge0\\ \Leftrightarrow\frac{x+27-6\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\ge0\\ \Leftrightarrow\frac{x-6\sqrt{x}+45}{\sqrt{x}+3}\ge0\)
Dễ thấy \(x-6\sqrt{x}+45=\left(\sqrt{x}-3\right)^2+36\ge36>0\forall x\ge0\)
\(\sqrt{x}+3\ge3>0\forall x\ge0\)
=> Ko có giá trị nào của x thỏa mãn yêu cầu
P/s: Nếu đề là \(x\sqrt{x}+27\)thì sẽ khác một chút :v
Bạn ơi chỗ kia phải là \(\frac{x-6\sqrt{x}+9}{\sqrt{x}+3}\)