Cho tam giác ABC vuông tại A, AB = 5,4cm, AC = 7,2cm. Từ trung điểm M của BC, vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại H và cắt đường thẳng AB tại E.
a) Chứng minh: tam giác EMB đồng dạng với tam giác CAB.
b) Tính EB, và EM
c) Chứng minh BH vuông góc với EC
d) Chứng minh HA.HC = HM.HE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔEMB vuông tại M và ΔCAB vuông tại A có
góc B chung
=>ΔEMB đồng dạng với ΔCAB
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
ΔEMB đồng dạng vơi ΔCAB
=>EM/CA=MB/AB=EB/CB
=>EM/8=5/6=EB/10
=>EM=20/3cm; EB=10*5/6=50/6=25/3(cm)
a: Ta có: BM//EF
EF\(\perp\)AH
Do đó: AH\(\perp\)BM
Xét ΔAMB có
AH là đường cao
AH là đường phân giác
Do đó: ΔAMB cân tại A
b: Xét ΔAFE có
AH vừa là đường cao, vừa là đường phân giác
Do đó: ΔAFE cân tại A
=>AF=AE
Ta có: AF+FM=AM
AE+EB=AB
mà AF=AE và AM=AB
nên FM=EB
Xét ΔCMB có
D là trung điểm của CB
DF//MB
Do đó: F là trung điểm của CM
=>CF=FM
=>CF=FM=EB
a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có
góc B chung
=>ΔBME đồng dạng với ΔBAC
b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có
góc MBE=góc MNC
=>ΔMBE đồng dạng với ΔMNC
=>MB/MN=ME/MC
=>MN*ME=MB*MC=1/4BC^2
=>BC^2=4*MN*ME
a) xét △ABC và △MBE có :
Góc BAC = Góc BME = 90 (Gt)
Góc B chung
⇒△ABC ∼ △MBE (g.g) (1)
b)Xét △ABC và △MCN có:
Góc BAC = góc NMC = 90 (Gt)
⇒△ABC ∼ △MBE (g.g) (2)
Ta có M là tđ của BC ⇒ MB =MC =1/2 BC
Từ (1) và (2) ⇒△MNC ∼ △MBE
⇒EM/MC = MN/BM
⇔ EM/MN = 1/2BC : 1/2BC
⇔BC2 =EM/MN : 4
⇔BC2 = EM/4MN