Giải phương trình
\(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
\(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=3.\frac{x-1}{2x}+10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
Đặt \(\sqrt{\frac{3x-1}{x}}=a\)
\(pt\Leftrightarrow2a=\frac{1}{a^2}+1\)
\(\Leftrightarrow\frac{1}{a^2}-2a+1=0\)
\(\Leftrightarrow\frac{-2a^3+a^2+1}{a^2}=0\)
\(\Leftrightarrow-2a^3+a^2+1=0\)
\(\Leftrightarrow-2a^3+2a^2-a^2+a-a+1=0\)
\(\Leftrightarrow-2a^2\left(a-1\right)-a\left(a-1\right)-\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(-2a^2-a-1\right)=0\)
Dễ chứng minh \(-2a^2-a-1< 0\forall a\)
\(\Rightarrow a-1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt{\frac{3x-1}{x}}=1\)
\(\Leftrightarrow3x-1=x\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Đặt \(\sqrt{\frac{2x}{x-1}}=a\)
\(pt\Leftrightarrow3a+\frac{4}{a}=\frac{3}{a^2}+10\)
\(\Leftrightarrow\frac{3}{a^2}-\frac{4}{a}-3a+10=0\)
\(\Leftrightarrow\frac{-3a^3+10a^2-4a+3}{a^2}=0\)
\(\Leftrightarrow-3a^3+10a^2-4a+3=0\)
Giải pt ta được \(a=3\)
\(\Leftrightarrow\sqrt{\frac{2x}{x-1}}=3\)
\(\Leftrightarrow\frac{2x}{x-1}=9\)
\(\Leftrightarrow x=\frac{9}{7}\)
Vậy...