Cho tam giác AMN bằng tam giác PQR biết AM bằng 6cm, AN bằng 4cm và QR bằng 5cm. Tính chu vi của mỗi tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\widehat{B}\)=\(\widehat{F}\); AB = EF
Để tam giác ABC = tam giác DEF theo trường hợp cạnh góc cạnh, ta cần bổ sung điều kiện BC = FD
Khi đó. tam giác ABC = tam giác EFD (c.g.c)
b/ Ta có: tam giác ABC = tam giác EFD
=> AB = EF; BC = FD; AC = DE
Chu vi tam giác ABC = tam giác EFD
AB + BC + AC = EF + FD + DE = 5 + 6 + 6
= 17 (cm)
Vậy chu vi tam giác ABC=chu vi tam giác EFD = 17 cm
+) Do ΔABC = ΔDEH nên:
AB = DE = 5 cm
AC = DH= 6 cm
+) Vì chu vi tam giác DEH là 19 cm nên:
DE + EH + DH = 19
Thay số: 5 + EH +6 = 19 suy ra: EH = 8 cm
Vậy độ dài các cạnh của tam giác DEH là: DE = 5cm; DH = 6cm; EH = 8cm.
a,có:S AMN =1/2 S ABC
=>S ABC = 2.5 AMN = 2.3=6 cm2
b,có 2.MN=BC
=>MN=BC/2 = 6/2 = 3 cm
Vì ΔABC = ΔDEF nên suy ra:
AB = DE = 4cm
BC = EF = 6cm
DF = AC = 5cm
Chu vi tam giác ABC bằng:
AB + BC + CA = 4 + 6 + 5 = 15 (cm)
Chu vi tam giác DEF bằng:
DE + EF + DF = 4 + 6 + 5 = 15 (cm)
Do \(\Delta AMN=\Delta PQR\)=> PQ = AM = 6cm , PR = AN = 4cm , MN = QR = 5cm .
Chu vi \(\Delta AMN\)bằng chu vi \(\Delta PQR\)và bằng là : 6 + 4 + 5 = 15cm.