Tính giá trị biểu thức
\(9x^2\)+ 42x+49 tại x=1
\(\frac{1}{4}a^2+2ab^2+4b^4\)tại a=2 , b=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b.\)
\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)
\(=\left|3a\right|\cdot\left|b-2\right|\)
Với : \(a=2,b=-\sqrt{3}\)
\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)
ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)
\(=\frac{8ab}{a^4b^4-16}\)
b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
=> (a2 + 4).9 = a2(b2 + 9)
=> 9a2 + 36 = a2b2 + 9a2
=> a2b2 = 36
=> (ab)2 = 36
=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)
Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)
Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)
a) \(\left|x\right|=2\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
+) TH1: \(x=2\)
\(A=\left(3\cdot2+5\right)\left(2\cdot2-1\right)+\left(4\cdot2-1\right)\left(3\cdot2+2\right)\)
\(A=89\)
+) TH2: \(x=-2\)
\(A=\left(-2\cdot3+5\right)\left(-2\cdot2-1\right)+\left(-2\cdot4-1\right)\left(-2\cdot3+2\right)\)
\(A=-27\)
Vậy...
b) \(B=9x^2+42x+49\)
\(B=\left(3x+7\right)^2\)
\(B=\left(3\cdot1+7\right)^2\)
\(B=100\)
Vậy...
a) Rút gọn M = -6ab(-2b + a). Tính được M = 60.
b) Rút gọn M = 6xy – 7. Tính được N = -10.
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\) ĐK đề bài
\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)
b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)
có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
thay x=4 vào ta được \(\left(2\cdot4-7\right)^2=\left(8-7\right)^2=1^2=1\)
vậy \(4x^2-28x+49=1\)khi x=4
\(9x^2+42x+49=\left(3x\right)^2+2\cdot3x\cdot7+7^2=\left(3x+7\right)^2\)
thay x=1 và ta được \(\left(3\cdot1+7\right)^2=10^2=100\)
vậy \(9x^2+42x+49=100\)đạt được khi x=1
\(25x^2-2xy+\frac{1}{25y^2}=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5y}+\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)^2\)
thay x=\(\frac{-1}{5}\)và y=-5 vào ta được \(\left[5\cdot\left(\frac{-1}{5}\right)-\frac{1}{5\cdot\left(-5\right)}\right]^2=\left(1-\frac{1}{-25}\right)^2=\left(\frac{26}{25}\right)^2=...\)
vậy \(25x^2-2xy+\frac{1}{25y^2}=\left(\frac{26}{25}\right)^2\)khi x=\(\frac{-1}{5}\)và y=-5
4x2 - 28x + 49 = ( 2x )2 - 2.2x.7 + 72 = ( 2x - 7 )2
Thế x = 4 ta được : ( 2 . 4 - 7 )2 = 12 = 1
9x2 + 42x + 49 = ( 3x )2 + 2.3x.7 + 72 = ( 3x + 7 )2
Thế x = 1 ta được : ( 3.1 + 7 )2 = 102 = 100
25x2 - 2xy + 1/25y2 = ( 5x )2 - 2.5x.1/5y + ( 1/5y )2 = ( 5x - 1/5y )2
Thế x = -1/5 , y = -5 ta được : \(\left[5\cdot\left(-\frac{1}{5}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2=\left[-1+1\right]^2=0\)
Câu 1 :
\(a,\left(3x+2\right)^2=9x^2+12x+4.\)
\(b,\left(6a^2-b\right)^2=36a^4-12a^2b-b^2\)
\(c,\left(4x-1\right)\left(4x+1\right)=16x^2-1\)
\(d,\left(1-x\right)\left(1+x\right)\left(1+x^2\right)=\left(1-x^2\right)\left(1+x^2\right)=1-x^4\)
\(e,\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4\)
\(f,\left(x^3+y^2\right)\left(x^3-y^2\right)=x^6-y^4\)
Bài 2 :
\(a,A=9x^2+42x+49=9+42+49=100.\)
\(b,B=25x^2-2xy+\frac{1}{25}y^2=\left(5x^2\right)-2.5x.\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)
\(=\left(5x-\frac{1}{5}y\right)^2=\left(-1+1\right)^2=0\)
\(c,C=4x^2-28x+49=4x^2-14x-14x+49\)
\(=2x\left(x-7\right)-7\left(x-7\right)=\left(2x-7\right)\left(x-7\right)\)
\(=\left(8-7\right)\left(4-7\right)=-3\)
\(9x^2+42x+49=\left(3x+7\right)^2\)
Thay x=1 ta có
\(\left(3.1+7\right)^2=10^2=100\)
\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a+2b^2\right)^2\)
Thay a=2;b=-1 ta có
\(\left(\frac{1}{2}.2+2\left(-1\right)^2\right)^2=\left(1+2\right)^2=3^2=9\)
\(\(9x^2+42x+49\)\)tại x = 1
Ta có:\(\(9x^2+42x+49=\left(3x\right)^2+2.3x.7+7^2=\left(3x+7\right)^2\)\)
Thay x = 1 vào \(\(\left(3x+7\right)^2\)\)ta được:
\(\(\left(3.1+7\right)^2=10^2=100\)\)
\(\(\frac{1}{4}a^2+2ab^2+4b^4\)\)tại a = 2 ; b = -1
Ta có: \(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b^2\right)^2\)
Thay a = 2 ; b = -1 vào\(\left(\frac{1}{2}a+2b^2\right)^2\)ta được:
\(\(\left(\frac{1}{2}.2+2.\left(-1\right)^2\right)^2=\left(3\right)^2=9\)\)