A= \(\left(\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}}{\sqrt{a}-3}-\frac{3a-3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\right)đk:a\ge0;a\ne9\)
a. Rút gọn A
b. Tìm a để A<\(\frac{1}{2}\)
c. Tìn giá trị nguyên của a để A nhận giá trị nguyên
d. Tìm GTNN của P
a) A = \(\left(\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{a-9}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{a-9}-\frac{3a-3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-\frac{\sqrt{a}-3}{\sqrt{a}-3}\right)\) (quy đồng lên thôi)
\(=\left(\frac{2a-6\sqrt{a}}{a-9}+\frac{a+3\sqrt{a}}{a-9}-\frac{3a-3}{a-9}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-3}\right)\) (khai triển)
\(=\left(\frac{-3\sqrt{a}+3}{a-9}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-3}\right)\) (rút gọn)
\(=\frac{-3\left(\sqrt{a}-1\right)}{a-9}.\frac{\sqrt{a}-3}{\sqrt{a}+1}=\frac{-3\left(\sqrt{a}-1\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{a}+1\right)}=\frac{-3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{-3\left(t-1\right)}{\left(t+3\right)\left(t+1\right)}\left(\text{đặt }\sqrt{a}=t\ge0\right)\)
b) Để A < 1/2 thì \(\frac{-3\left(t-1\right)}{\left(t+3\right)\left(t+1\right)}< \frac{1}{2}\Leftrightarrow-3\left(t-1\right)< \frac{1}{2}\left(t+3\right)\left(t+1\right)\)
\(\Leftrightarrow-3t+3< \frac{1}{2}\left(t^2+4t+3\right)\)
\(\Leftrightarrow-6t+6< t^2+4t+3\)
\(\Leftrightarrow t^2+10t-3>0\)
Giải ra nhưng số xấu quá:(
c) + d) Bí
Sai thì chịu:(