Tìm các số x, y, z biết x ÷ y ÷ z = 2 ÷ 3 ÷ 4 và x + 2.y - z = - 8
Mong mọi người giúp đỡ ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt �=�+1,�=�+2,�=�+3p=x+1,q=y+2,r=z+3, bài toán trở thành:
���=4(�−1)(�−2)(�−3)pqr=4(p−1)(q−
\(\frac{20-x}{x+7}=\frac{2}{5}\)
=> \(5\left(20-x\right)=2\left(x+7\right)\)
<=> 100 - 5x = 2x + 14
=> 2x + 5x = 100 - 14
=> 7x = 86
=> x = 86/7
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{5}\)
=> \(\frac{x}{2}=\frac{3}{5}\Rightarrow x=\frac{2\cdot3}{5}=\frac{6}{5}\)
\(\frac{y}{1}=\frac{3}{5}\Rightarrow y=\frac{3}{5}\)
\(\frac{z}{4}=\frac{3}{5}\Rightarrow z=\frac{3\cdot4}{5}=\frac{12}{5}\)
1)
\(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=\frac{-7}{20}\)
\(x=\frac{1}{4}:\frac{-7}{20}=\frac{1}{4}\cdot\frac{20}{-7}=\frac{-5}{7}\)
2) Giải:
Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Suy ra: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Vì \(\frac{x}{8}=2\Rightarrow x=8\cdot2=16\)
\(\frac{y}{12}=2\Rightarrow y=12\cdot2=24\)
\(\frac{z}{15}=2\Rightarrow z=15\cdot2=30\)
Vậy x=16
y=24
z=30
tick mình nha
1)=> 1/4 :x =2/5 - 3/4
=>1/4:x=-7/20
=>x=1/4:-7/20
=>x=-5/7
vậy x=-5/7
2) => x/8=y/12 ; y/12=z/15
Apa dụng tính chất của dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x+y-z / 8+12-15 = 10/5 = 2
=>x=16
y=24
z=30
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
Vì \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{-8}{4}=-2\)
\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.4=-8\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
Ta có :\(x\div y\div z=2\div3\div4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\).
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\Rightarrow\hept{\begin{cases}x=2k\\2y=6k\\z=4k\end{cases}}}\)
Mà \(x+2y-z=-8\)
\(\Rightarrow2k+6k-4k=-8\)
\(\Rightarrow4k=-8\)
\(\Rightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=2.\left(-2\right)\\y=3.\left(-2\right)\\z=4.\left(-2\right)\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)