Phương trình : \(cos2x+4sinx+5=0\) có bao nhiêu nghiệm trên khoảng \(\left(0;;10\Pi\right)\) ?
A . 5
B . 4
C . 2
D . 3
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Dùng công thức
cos
2
x
=
1
-
2
sin
2
x
để đưa phương trình ban đầu về đa thức bậc 2 theo sin x.
Giải phương trình này tìm x và đối chiếu với yêu cầu
x
∈
0
;
10
π
để tìm được giá trị của x.
Ta có
Do đó tập nghiệm của phương trình đã cho trên ( 0 ; 10 π ) là
Đáp án D
PT
⇔ 1 − 2 sin 2 x + 4 sin x + 5 = 0 ⇔ sin 2 x − 2 sin x − 3 = 0 ⇔ sin x = − 1 sin x = 3
⇒ sin x = − 1 ⇔ x = − π 2 + k 2 π k ∈ ℤ
Vì
x ∈ 0 ; 10 π ⇔ 0 < − π 2 + k 2 π < 10 π ⇔ 1 4 < k < 21 4 ⇒ k ∈ 1 ; 2 ; 3 ; 4 ; 5
\(cos2x+4sinx+5=0\Rightarrow1-2sin^2x+4sinx+5=0\)
\(\Rightarrow-2sin^2x+4sinx+6=0\) \(\Rightarrow\left[{}\begin{matrix}sinx=3\left(loại\right)\\sinx=-1\end{matrix}\right.\)
\(\Rightarrow sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
Vậy pt có 1 họ nghiệm, và khi biểu diễn họ nghiệm trên 1 vòng tròn lượng giác ta được 1 nghiệm là \(x=-\dfrac{\pi}{2}+k2\pi\)
Pt \(\Leftrightarrow2sin\left(2x+\dfrac{\pi}{3}\right)=\sqrt{3}\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(x\in\left(0;\dfrac{\pi}{2}\right)\)\(\Rightarrow\left[{}\begin{matrix}0< \dfrac{\pi}{6}+k\pi< \dfrac{\pi}{2}\\0< k\pi< \dfrac{\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{6}< k< \dfrac{1}{3}\\0< k< \dfrac{1}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Leftrightarrow\left[{}\begin{matrix}k=0\\k\in\varnothing\end{matrix}\right.\)
Vậy có 1 nghiệm thỏa mãn
Đáp án C
Phương trình đã cho ⇔ sin x = 3 4 ( 1 ) Quan sát đường tròn
lượng giác ta thấy có 2 giá trị của x ∈ - π ; π thỏa mãn phương trình (1).