K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)

Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

    Vậy A max là 7 chỉ khi x=-2

15 tháng 8 2020

b) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-x^2-2x-1-y^2-2y-1+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)

Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)

Vậy ...................

HQ
Hà Quang Minh
Giáo viên
9 tháng 8 2023

\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)

\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)

a: M=x^2-4x+4+1

=(x-2)^2+1>=1

Dấu = xảy ra khi x=2

b: N=y^2-y+1/4-13/4

=(y-1/2)^2-13/4>=-13/4

Dấu = xảy ra khi y=1/2

c: P=x^2-4x+4+y^2+y+1/4+11/4

=(x-2)^2+(y+1/2)^2+11/4>=11/4

Dấu = xảy ra khi x=2 và y=-1/2

Bài 1: Làm tính nhân:a. 3x2(5x2- 4x +3) b. – 5xy(3x2y – 5xy +y2)c. (5x2- 4x)(x -3) d. (x – 3y)(3x2 + y2 +5xy)Bài 2: Rút gọn các biểu thức sau:a.(x-3)(x + 7) – (x +5)(x -1) b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)Bài 3: Phân tích các đa thức sau thành nhân tử:a. – 24x^2y^2 + 12xy^3b. x2 – 6 x +xy - 6yc. 2x2 + 2xy - x - yd. ax – 2x - a2 +2ae. x3- 3x2 + 3x -1f. 3x2 - 3y2 -...
Đọc tiếp

Bài 1: Làm tính nhân:
a. 3x2(5x2- 4x +3) b. – 5xy(3x2y – 5xy +y2)
c. (5x2- 4x)(x -3) d. (x – 3y)(3x2 + y2 +5xy)
Bài 2: Rút gọn các biểu thức sau:
a.(x-3)(x + 7) – (x +5)(x -1) b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
Bài 3: Phân tích các đa thức sau thành nhân tử:
a. – 24x^2y^2 + 12xy^3
b. x2 – 6 x +xy - 6y
c. 2x2 + 2xy - x - y
d. ax – 2x - a2 +2a
e. x3- 3x2 + 3x -1
f. 3x2 - 3y2 - 12x – 12y
g. x2 - 2xy – x2 + 4y2
h. x2 + 2x + 1 - 16
i. x2 - 4x + 4 - 25y2
k. x2 - 6xy + 9y2 -25z2
l. 81 – x2 + 4xy – 4y2
m.x2 +6x –y2 +9
n.x2 – 2x - 4y2 + 1
o. x2 – 2x -3
p. x2 + 4x -12 q. x2 + x – 6
s. x2 -5x -6
t. x2 - 8 x – 9
u, x2 + 3x – 18
v, x2 - 8x +15
x, x2 + 6x +8
z, x2 -7 x + 6
w, 3x2 - 7x + 2
y, x4 + 64

Bài 4: Tìm x biết:
a. x2-25 –( x+5 ) = 0
b. 3x(x-2) – x+ 2 = 0
c. x( x – 4) - 2x + 8 = 0
d. 3x (x + 5) – 3x – 15=0

e. ( 3x – 1)2 – ( x +5)2=0
f. ( 2x -1)2 – ( x -3)2=0
g.(2x -1)2- (4x2 – 1) = 0
g. x2(x2 + 4) – x2 – 4 = 0
i.x4 - x3 +x2 - x =0
k. 4x2 – 25 –( 2x -5)(2x +7)=0
l.x3 – 8 – (x -2)(x -12) = 0
m.2(x +3) –x2– 3x=0


 Bài 5: Làm phép chia:
a. (x4+ 2x3+ 10x – 25) : (x2 + 5) b. (x3- 3x2+ 5x – 6): ( x – 2)
Bài 6: Tìm số a để đa thức 3x3 + 2x2 – 7x + a chia hết cho đa thức 3x – 1

1
19 tháng 10 2021

Chia câu ra đi ạ

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

25 tháng 8 2018

a) Nhận xét :

/ x + 8 / > 0 với mọi x

/ y - 3 / > 0 với mọi y

=> / x + 8 / + / y - 3 / > 0 

=> / x + 8 / + / y - 3 / + 2018 > 2018

=> M > 2018

=> Giá trị nhỏ nhất của M = 2018

Dấu " = " xảy ra khi :

/ x + 8 / = 0

và / y - 3 / = 0

=> x + 8 = 0

và y - 3 = .0

=> x = - 8

Và y = 3

Vậy giá trị  nhỏ nhất của M là 2018 khi x = - 8 và y = 3

b) Nhận xét :

/ x + 2 / > 0 với mọi x 

/ y - 1 / > 0 với mọi y

=> / x + 2 / + / y - 1 / > 0

=> - / x + 2 / - / y - 1 / < 0

=> - / x + 2 / - / y - 1 / + 1999 < 1999

=> N < 1999

=> Giá trị lớn nhất của N = 1999

Dấu " = " xảy ra khi :

 / x + 2 / = 0

và / y - 1 / = 0

=> x + 2 = 0

và y - 1 = 0

=> x = - 2 

và y = 1

Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

5 tháng 3 2022

a, xem lại đề 

\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy ...

\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy ...

a, 

b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12

Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3

Vậy ...

c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4

Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1

Vậy ...

1 tháng 9 2021

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2