Chứng tỏ đa thức: F(x) = x2 - 2x + 2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x-8=x^2+2x+1-9\)
mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)
\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
giả sử đa thức trên có nghiệm khi
Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)
Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm )
![](https://rs.olm.vn/images/avt/0.png?1311)
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
\(F\left(x\right)=x^2-2x+2012\)
\(=\left(x^2-2x+1\right)+2011\)
\(=\left(x-1\right)^2+2011\)
\(>0\)
Nếu tìm MIN thì dấu bằng xảy ra tại x=1;khi đó F(x)=2011
\(F\left(x\right)=x^2-2x+2012\)
\(=x^2-x-x+1+2011\)
\(=x\left(x-1\right)-\left(x-1\right)+2011\)
\(=\left(x-1\right)\left(x-1\right)+2001\)
\(=\left(x+1\right)^2+2011\)
Ta thấy : \(F\left(x\right)>0\forall x\)nên \(F\left(x\right)\ne0\forall x\)nên đa thức \(F\left(x\right)\)không có nghệm trong tâph jowpj số thực.
Tham khảo nha !!!