K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

ĐKXĐ : x > 2

Ta có \(\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+x-6}\right)=5\)

\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{\left(x+3\right)\left(x-2\right)}\right)=5\)

Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\left(a>0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3-x+2=5\) và \(a\ne b\)

Pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

        \(\Leftrightarrow\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)

        \(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

      \(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(1-b\right)=0\)

       \(\Leftrightarrow a=b\left(h\right)a=1\left(h\right)b=1\)                                     (h) là hoặc nhé

*Với a = b (Loại do a khác b)

*Với \(a=1\Rightarrow\sqrt{x+3}=1\)

                    \(\Leftrightarrow x+3=1\)

                    \(\Leftrightarrow x=-2\)(Loại do ko thỏa mãn ĐKXĐ)

*Với \(b=1\Rightarrow\sqrt{x-2}=1\)

                    \(\Leftrightarrow x-2=1\)

                    \(\Leftrightarrow x=3\left(Tm\cdotĐKXĐ\right)\)

Vậy pt có nghiệm duy nhất x = 3

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

21 tháng 3 2016

<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)

b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)

<=>\(2\sqrt{2}^x+2=6\)

<=>x=2

27 tháng 9 2021

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)

Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)

PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)

+ Với a=1

\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)

+ Với b=1

\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)

Vậy \(S=\left\{-1\right\}\)

27 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)

Thì được:

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)

Làm tiếp