K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right).\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)

\(=2\)

\(b,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

22 tháng 7 2017

a) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(1+\sqrt{2}\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

= \(\dfrac{8+2\sqrt{5}}{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{4-\sqrt{15}}\)

=\(\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

= \(\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}.\left(\sqrt{5}-\sqrt{3}\right)^2\)

= \(\dfrac{\left(5-3\right)^2}{2}=2\)

22 tháng 7 2017

haha, tự biên tự diễn chắc vui lắm nhỉ????

Bài 1: Rút gọn biểu thức1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) ...
Đọc tiếp

Bài 1: Rút gọn biểu thức

1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)

3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)

5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)   6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)

7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\)  8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)

9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\)    10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)      12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

13) \(\sqrt{15-6\sqrt{6}}\)    14) \(\sqrt{8-2\sqrt{15}}\)    15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)

 

1
26 tháng 11 2017

Giúp mình :<

17 tháng 6 2021

Bài 1

a) Đặt VT = A

<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)

<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)

<=> 2A = \(\left(5-3\right)^2=4\)

<=> A = 2

b) Đặt VT = B

<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)

<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)

<=> B = 8 

Bài 2

Đặt VT = A

<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)

<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)

<=> \(A=\sqrt{\sqrt{5}+1}\)

25 tháng 7 2019
https://i.imgur.com/zP7lFrE.jpg
25 tháng 7 2019

Cảm ơn bạn nhiều !!!

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v

1 tháng 7 2016

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :

\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)      

\(=3-\sqrt{6}+2\sqrt{6}-3\)   ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )

\(=\sqrt{6}\)

 

18 tháng 6 2017

sai ngay từ đầu limdim

25 tháng 8 2019

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

26 tháng 8 2019

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)