tìm số tự nhiên n để
\(n^3-2n^2+3\) là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3+2n^2-3=n^3-n^2+3n^2-3=n^2\left(n-1\right)+3\left(n-1\right)\left(n+1\right)\)
\(A=\left(n-1\right)\left(n^2+3n+3\right)\)
Vì A là hợp số nên \(A>0\)lại có \(n^2+3n+3\ge3>0\)nên \(n-1>0\Leftrightarrow n>1\)
Xét TH \(n=2\Rightarrow A=n^2+3n+3=13\)là SNT.
Với \(n>2\), A luôn có ít nhất 3 ước là \(1;n-1;A\)nên nó là hợp số.
Vậy để A là hợp số thì \(n>2\)
`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)`
Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.
`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`
`<=> (n^2+1)(n-1)^2 = a^2`.
Vì `(n-1)^2` chính phương, `a^2` chính phương.
`=> n^2+1` chính phương.
Đặt `n^2+1 = b^2(b in NN)`.
`=> (b-n)(b+n) =1`
Mà `b, n in NN`.
`=> {(b-n=1), (b+n=1):}`
`<=> {(b=1), (n=0):}`
Vậy `n = 0`.
olm ơi trừ điểm nguyễn văn ko bít đi ạ bn ấy trả lời chtt
\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)
\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)
\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)
=>n+3 \(\in U_{\left(1\right)}\)
ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)
ta co bang :
n+3 | 1 | -1 |
n | -2 | -4 |
vi n \(\in\)N
=>n khong co gia tri
Để phân số \(\frac{n+3}{n-2}\)có giá trị nguyên
=> n + 3 \(⋮\)n - 2
=> n - 2 + 5 \(⋮\)n - 2
=> ( n - 2 ) + 5 \(⋮\)n - 2
=> 5 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; 5 }
Với n - 2 = 1 => n = 3
Với n - 2 = 5 => n = 7
Vậy : n \(\in\){ 3 ; 7 }
8n+27 = 8n+12 +15 =4(2n+3)+15 chia hết chó 2n+3
=> 15 chia hết cho 2n+3
2n+3 thuộc ước của 15; U(15) ={1;3;5;15}
+2n+3 = 1 loại
+2n+3 =3 => n =0
+2n+3 =5 => n=1
+2n+3 =15=> n =6
Vậy n thuộc {0;1;6}