chp hpt : 2x + ay =-4 và ax-3y =5 . Tìm a để hpt chỉ có duy nhất 1 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
1) Cho hệ phương trình:
{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)
a) Với m=1 ta có hệ phương trình:
{x+y=52x−y=−2{x+y=52x−y=−2
Cộng vế với vế ta được:
3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4
Vậy với m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4
b) Nghiệm (x0,y0)(x0,y0) của (I) thỏa mãn x0+y0=1x0+y0=1
nên ta có hệ phương trình:
⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)
Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43
Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11
Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.
2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my
Thay vào phương trình mx−2y=1mx−2y=1 ta được:
m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2
⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2
x=m+4m2+2x=m+4m2+2
Do m2+2>0m2+2>0 ∀m∀m
⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12
Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0
-{(ax - y = 4) (x - y = 1)
<=> ax - x = 3
<=> x(a - 1) = 3
Hệ phương trình có nghiệm duy nhất
<=> a - 1 ≠ 0
<=> a ≠ 1
Vậy a ≠ 1 để hệ phương trình có nghiệm duy nhất.
Hệ phương trình có vô số nghiệm
<=> a- 1 = 0 và 3 = 0 (vô lí)
Vậy không có giá trị nào cả a để phương trình có vô số nghiệm