K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Ta có: \(\hept{\begin{cases}x=\frac{y}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{8}\end{cases}}\Rightarrow\frac{x}{3}=\frac{y}{6}=\frac{z}{8}\)

Đặt: \(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=k\Rightarrow\hept{\begin{cases}x=3k\\y=6k\\z=8k\end{cases}}\)

Khi đó \(\frac{x+y+z}{x+y-z}=\frac{3k+6k+8k}{3k+6k-8k}=17\)

b) Từ \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\left(\frac{a-b}{c-d}\right)^{2017}\)(1)

Mặt khác: \(\frac{a^{2017}}{c^{2017}}=\frac{b^{2017}}{d^{2017}}=\frac{a^{2017}-b^{2017}}{c^{2017}-d^{2017}}\)(2)

Từ (1) và (2) =>đpcm

22 tháng 7 2019

cảm ơn girl nhưng phần b là mũ 2007 bạn nhé

8 tháng 9 2019

toi ko bit lam chi biet lam anh thui

8 tháng 9 2019

Mk cũng khá tốt về Anh nha bạn

8 tháng 1

ko đăng hình đc nhé bạn.

f: x+y+z=3

=>x^2+y^2+z^2+2(xy+xz+yz)=9

=>2(xy+yz+xz)=6

=>xy+yz+xz=3

mà x+y+z=3

nên x=y=z=1

e: x^2+y^2+2=2(x+y)

=>(x+y)^2-2xy+2-2(x+y)=0

=>(x+y)(x+y-2)-2(xy-1)=0

=>x=y=1

17 tháng 6 2016

a) A = (x+y) + |x+y| 

  • Nếu x+y >= 0 thì A = x+y+x+y = 2(x+y) chia hết cho 2
  • Nếu x+y <0 thì A = 0 cũng chia hết cho 2.

b) B = x - y - |x-y|

  • Nếu x-y >= 0 thì B = x-y-x+y = 0 chia hết cho 2
  • Nếu x-y < 0 thì B = x - y + x - y = 2*(x-y) chia hết cho 2.

c) C = x - y - z + ||x+y| + z|

  • Nếu |x+y| + z >= 0 thì C = x - y - z + |x+y| + z = x+y + |x+y| - 2y = A - 2y chia hết cho 2. (A là biểu thức A phần a)
  • Nếu |x+y| + z < 0 thì C = x - y - z - |x+y| - z = x+y + |x+y| - 2y - 2z - 2|x+y| = A - 2y -2z - 2|x+y| chia hết cho 2. (A là biểu thức A phần a).
17 tháng 6 2016

Thanks nhá, yêu bạn chóa

23 tháng 7 2015

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

25 tháng 3 2016

rtyuiuydghfrtghhfrfghhgfghjhg

30 tháng 7 2018

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).