tính nhanh (1-1/2)×(1-1/4)×(1-1/5)×...(1-1/2019)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
a ) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\times1280\)
= \(\frac{1}{2}\times1280+\frac{1}{4}\times1280+\frac{1}{8}\times1280+\frac{1}{16}\times1280+\frac{1}{32}\times1280+\frac{1}{64}\times1280\)\(+\frac{1}{128}\times1280\)
= 640 + 320 + 160 + 80 + 40 + 20 + 10
= ( 640 + 160 ) + ( 320 + 80 ) + ( 40 + 20 + 10 )
= 800 + 400 + 70
= 1270
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
(1+3+5+7+...+2019+2021)
A=1−3+5−7+......−2019+2021−2023
A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)
A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cặp)
a=−2.506A=−2.506
A=−1012A=−1012
a) \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{99.101}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)+\left(\frac{1}{2.4}+...+\frac{1}{98.100}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=2\cdot\frac{100}{101}+2\cdot\frac{49}{100}=\frac{200}{101}+\frac{49}{50}\)
câu b mk ko bk! xl bn nha!
mk nhầm
...
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\) 1/100)
= 1/2.(1-1/101) + 1/2.(1/2-1/100)
=1/2.100/101 + 1/2.49/100
= 50/101 + 49/200
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\cdot\cdot\cdot\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\cdot\cdot\cdot\times\frac{2018}{2019}\)
\(=\frac{1\times2\times\cdot\cdot\cdot\times2018}{2\times3\times\cdot\cdot\cdot\times2019}\)
\(=\frac{1}{2019}\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot.....\cdot\left(1-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}.........\cdot\frac{2018}{2019}\)
\(A=\frac{1.3}{2.2019}\)
\(A=\frac{3}{2.2019}=\frac{1}{2.673}=\frac{1}{1346}\)
_Vi hạ_