K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Khi m =3 

=> hàm số trở thành y=2x-3+3=2x

Hoành độ giao điểm (p) và (d) là nghiệm pt 

\(x^2=2x\)

<=> x2-2x=0

<=> x(x-2)=0

<=> x=0 hoặc x=2

với x=0 thay vào (P) ta có y=02=0

với x=2thay vào (P) ta có  y=22=4

Vậy (P) và (d) cắt nhau tại 2 điểm có tọa độ (0;0)và (2;4) khi m =3

b) Hoành độ giao điểm (p) và (d) là nghiệm pt 

\(x^2=2x-m+3\)

\(x^2-2x+m-3=0\)

ta có \(\Delta\)=\(2^2-4\left(m-3\right)\)=\(4-4m+12\)

                                                       =\(16-4m\)

Để (p) và (d ) cắt nhau tại 2 điểm phân biệt thì 16-4m>0 hay m<4

Theo Vi ét ta có x1+x2=2

                           x1.x2=m-3

Và y1=x12; y2=x22

Khi đó x1.x2.( y1+y2)=-6

<=> (m-3) . ( x12+x22)=-6

<=> (m-3). ((x1+x2)2-2x1x2)=-6

<=> (m-3). (4-2m+6)=-6 

 Tự lm nốt nha bn ! ( mk mỏi tay quá :) ) ( nhớ k mk đấy )

22 tháng 5 2021

Xét pt hoành độ gđ của (d) và (P) có:

\(x^2=2x+4m^2-8m+3\)

\(\Leftrightarrow x^2-2x-4m^2+8m-3=0\) (1)

\(\Delta=4-4\left(-4m^2+8m-3\right)\)\(=16m^2-32m+16=16\left(m-1\right)^2\)

Để (P) và (d) cắt nhau tại hai điểm pb khi pt (1) có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m\ne1\)

Có \(A\in\left(P\right)\Rightarrow y_1=x_1^2\)

\(B\in\left(P\right)\Rightarrow y_2=x_2^2\) , trong đó x1; x2 là hai nghiệm của pt (1)

Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-4m^2+8m-3\end{matrix}\right.\)

\(y_1+y_2=10\)

\(\Leftrightarrow x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4-2\left(-4m^2+8m-3\right)=10\)

\(\Leftrightarrow8m^2-16m=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)(tm)

Vậy...

 

4 tháng 5 2021

m = +- 5

 

 

8 tháng 5 2021

ghi hộ cách lm dc ko?

 

12 tháng 1 2021

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

12 tháng 1 2021

xin lỗi đề mình đánh sai phải là -4y+4

28 tháng 9 2021

\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)

\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)

30 tháng 11 2017