goi so A = n2 + n +1. chung to rang
a)So A la so le
b)So A ko chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số cuối chia hết cho 5 là:95 số đầu chia hết cho 5 là 10
khoảng cách giữa các số chia hết cho 5 là :5
tập hợp các số chia hết cho 5 là : ( 95 - 10 ):5 +1 =18
so cuoi chia het cho ca 2 va 5 la 90 so dau chia het cho ca 2 va 5 la 10
khoảng cách giữa các số chia hết cho cả 2 và 5 là 10
tập hợp các số chia hết cho cả 2 và 5 là ( 90 - 10):10+1=9
tập hợp C là tập hợp các phần tử chung của A và B là 18-9 =9
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
\(n^2+n+1=n\left(n+1\right)+1\)
vì n và n +1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2
=> A chia 2 dư 1 => A lẻ
a) Ta có : A = n2 + n + 1
= n(n + 1) + 1 (1)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp
=> n(n + 1) \(\in\)2k (k\(\inℕ\))
=> n(n + 1) + 1 \(\in\)2k + 1 (k\(\inℕ\))
mà 2k + 1 không chia hết cho 2
=> 2k + 1 là số lể
=> n2 + n + 1 là số lẻ (đpcm)
b) Từ (1) ta có : A = n(n + 1) + 1
Mà n(n + 1) = ....0 = ...2 = ...6
=> n(n + 1) + 1 = ....1 = ...3 = ...7
Ta nhận thấy các chữ số tận cùng trên không chia hết cho 5
=> n(n + 1) + 1 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)