K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Đặt: \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)

\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)

\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)

\("="\Leftrightarrow a=b=c\)

Đặt \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)

\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)

\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)

Dấu = xảy ra \(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

Xét tử :

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)

\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)

\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)

\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)

\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)

Xét mẫu (tương tự bên tử)

\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)

\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)

Do đó:

\(A=\frac{1}{1}=1\)