Số nghiệm của phương trình : \(tanx=tan\frac{3\Pi}{11}\) trên khoảng \(\left(\frac{\Pi}{4};2\Pi\right)\) là ?
A . 1
B . 2
C . 3
D . 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).
Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi < \frac{{7\pi }}{3}\)\( \Leftrightarrow - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).
Mà k ∈ ℤ nên k ∈ {0; 1}.
Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).
Đáp án: B
\(tanx=tan\frac{3\pi}{11}\Rightarrow x=\frac{3\pi}{11}+k2\pi\)
Do \(\frac{\pi}{4}\le x\le2\pi\)
\(\Rightarrow\frac{\pi}{4}\le\frac{3\pi}{11}+k2\pi\le2\pi\)
\(\Rightarrow-\frac{1}{88}\le k\le\frac{19}{22}\)
Mà \(k\in Z\Rightarrow k=0\)
Vậy pt có đúng 1 nghiệm trên đoạn đã cho
Ta có
\(\begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\frac{\pi }{4} + k2\pi ;k \in Z\\x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\pi {\rm{ - }}\frac{\pi }{4} + k2\pi ;k \in Z\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {\rm{ }}k2\pi ;k \in Z\\x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k2\pi ;k \in Z\end{array} \right.\end{array}\)
Mà \(x \in \left[ {0;\pi } \right]\) nên \(x \in \left\{ {0;\frac{\pi }{2}} \right\}\)
Vậy phương trình đã cho có số nghiệm là 2.
Chọn C
a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) = - \tan x = - f\left( x \right),\;\forall x\; \in \;D\)
Vậy \(y = \tan x\) là hàm số lẻ.
b)
\(x\) | \( - \frac{\pi }{3}\) | \( - \frac{\pi }{4}\) | \( - \frac{\pi }{6}\) | \(0\) | \(\frac{\pi }{6}\) | \(\frac{\pi }{4}\) | \(\frac{\pi }{3}\) |
\(\tan x\) | \( - \sqrt 3 \) | \( - 1\) | \( - \frac{{\sqrt 3 }}{3}\) | \(0\) | \(\frac{{\sqrt 3 }}{3}\) | \(1\) | \(\sqrt 3 \) |
c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).
1.
\(\Leftrightarrow2x-\frac{\pi}{4}=x+\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{7\pi}{12}+k\pi\)
\(-\pi< \frac{7\pi}{12}+k\pi< \pi\Rightarrow-\frac{19}{12}< k< \frac{5}{12}\Rightarrow k=\left\{-1;0\right\}\) có 2 nghiệm
\(x=\left\{-\frac{5\pi}{12};\frac{7\pi}{12}\right\}\)
2.
\(\Leftrightarrow3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}\)
Nghiệm âm lớn nhất là \(x=-\frac{\pi}{18}\) khi \(k=-1\)
3.
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3\pi}{4}=\frac{\pi}{3}+k2\pi\\x-\frac{3\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13\pi}{12}+k2\pi\\x=\frac{17\pi}{12}+k2\pi\end{matrix}\right.\)
Nghiệm âm lớn nhất \(x=-\frac{7\pi}{12}\) ; nghiệm dương nhỏ nhất \(x=\frac{13\pi}{12}\)
Tổng nghiệm: \(\frac{\pi}{2}\)
\({\mathop{\rm tanx}\nolimits} = tan\dfrac{{3\pi }}{{11}} \Leftrightarrow x = \dfrac{{3\pi }}{{11}} + k\pi \Rightarrow \dfrac{{3\pi }}{{11}} + k\pi \in \left( {\dfrac{\pi }{4};2\pi } \right) \Rightarrow k = 0,k = 1\)
Chọn B