K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

b: NH=PH=2cm

=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)

c: Xét ΔMNI và ΔMPI có

MN=MP

góc NMI=góc PMI

MI chung

=>ΔMNI=ΔMPI

28 tháng 3 2022

có M

28 tháng 3 2022

chưa hỉu cái đề lắm

Đề cs sai k  bạn ???

+) Xét \(\Delta\)MNP vuông tại M 

\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)

\(\Rightarrow NP^2=10^2+10^2\)

\(\Rightarrow NP^2=100+100=200\)

\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )

19 tháng 6 2017

Xin lỗi mình không biết làm!

14 tháng 2 2019

*Bn tự vẽ hình nha

a, Áp dụng đ/lý Py-ta-go vào tam giác vuông MHP ta cs

MH^2+ HP^2= MP^2

MH^2.           =MP^2-HP^2

MH^2            =20^2- 16^2

MH^2.           =400-256

MH^2            =144

=> MH=12cm

Áp dụng đ/lý Pytago vào tam giác vuông MHN ta cs

MN^2= NH^2+ MH^2

MN^2= 9^2 + 12^2

MN^2= 81+144

MN^2= 255

=>MN= 15cm

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

Do đó: ΔHNM\(\sim\)ΔMNP

b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)

\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)

=>HP=6,4(cm)