K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

8 tháng 6 2021

Ta có : \(cos2A+2\sqrt{2}\left(cosB+cosC\right)=3\)

\(\Leftrightarrow1-2sin^2A+2\sqrt{2}.2.cos\left(\dfrac{B+C}{2}\right).cos\left(\dfrac{B-C}{2}\right)=3\)

\(\Leftrightarrow2sin^2A-4\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+2=0\)

\(\Leftrightarrow sin^2A-2\sqrt{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=0\) 

\(\Delta\) ABC không tù nên \(cos\dfrac{A}{2}\ge cos45^o=\dfrac{\sqrt{2}}{2}\) 

Suy ra : VT \(\ge sin^2A-4.cos\dfrac{A}{2}.sin\dfrac{A}{2}.cos\left(\dfrac{B-C}{2}\right)+1=K\)

Thấy : \(K=sin^2A-2.sinA.cos\left(\dfrac{B-C}{2}\right)+cos\left(\dfrac{B-C}{2}\right)^2+1-cos\left(\dfrac{B-C}{2}\right)^2\)

\(=\left(sinA-cos\left(\dfrac{B-C}{2}\right)\right)^2+sin^2\left(\dfrac{B-C}{2}\right)\ge0\) 

Suy ra : \(VT\ge K\ge0=VP\)

 Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}sinA=cos\left(\dfrac{B-C}{2}\right)\\sin\left(\dfrac{B-C}{2}\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinA=cos0^o=1\\B=C\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=\dfrac{\pi}{2}\\B=C=\dfrac{\pi}{4}\end{matrix}\right.\)  ( do \(A+B+C=\pi\) ) 

Vậy ... 

20 tháng 6 2015

<=> 2.cos2A - 1  + 2\(\sqrt{2}\). (cosB + cosC) = 3

<=> 2.cos2A +  2\(\sqrt{2}\). 2. cos\(\frac{B+C}{2}\). cos\(\frac{B-C}{2}\)  - 4 = 0

<=> 2. cos2A +  4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4 = 0 (Do  cos\(\frac{B+C}{2}\)=  cos\(\frac{180^o-A}{2}\)= sin \(\frac{A}{2}\))

Nhận xét: tam giác ABC tù nên cosA > 0;  Mà cosA \(\le\) 1   => cos2\(\le\) cosA

Có: cos\(\frac{B-C}{2}\) \(\le\) 1

=>0 =  2. cos2A +  4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4 \(\le\) 2cosA +   4\(\sqrt{2}\).sin \(\frac{A}{2}\). cos\(\frac{B-C}{2}\)  - 4

= 2.(1 - 2sin2 \(\frac{A}{2}\)) +  4\(\sqrt{2}\).sin \(\frac{A}{2}\)  - 4 = -2. (2sin2 \(\frac{A}{2}\)-  2\(\sqrt{2}\).sin \(\frac{A}{2}\) + 1) =  -2. \(\left(\sqrt{2}sin\frac{A}{2}-1\right)^2\)\(\le\)0

=>   \(\sqrt{2}sin\frac{A}{2}-1=0\) <=> \(sin\frac{A}{2}=\frac{1}{\sqrt{2}}\)<=> A/2 = 45o

=> góc A = 90o

Dấu "=" xảy ra  <=> cos\(\frac{B-C}{2}\) = 1 => B - C = 0 => B = C mà A = 90o

=> B = C = 45o

vậy..........

 

 

3 tháng 3 2019

\(\Rightarrow \tan A+\tan C=2\tan B\)

\(\Leftrightarrow \frac{\sin\left ( A+C \right )}{\cos A\cos C}=2\cdot\frac{\sin\left ( A+C \right )}{\cos B}\\\)

\(\Rightarrow \cos B=2\cos A\cos C\)

\(\Leftrightarrow 2\cos B=\cos(A-C)\)

\(\left (\cos A+\cos C \right )^2=\cos^2 A+\cos^2 C+2\cos A\cos C\\=\frac{\cos2A+\cos2C}{2}+1+\cos B\\=-\cos(B)\cos(A-C)+1+\cos B \\=-2\cos^2B+\cos B+1 \le \frac{9}{8}\\\Rightarrow \cos A+\cos C\le \frac{3\sqrt2}{4}\)

Chứng minh hoàn tất.

12 tháng 5 2022

use mot cay gay

24 tháng 7 2020

Ta chứng minh chiều nghịch:

Khi tam giác ABC đều, góc A=gócB=gócC=60*

Khi đó cosA+cosB+cosC=3/2(đpcm)

Ta chứng minh chiều thuận

Ta chứng minh cosA+cosB+cosC≤3/2

Thật vậy:

1.jpg

 Mà theo gt, cosA+cosB+cosC=3/2

nên ta có tam giác ABC đều(đpcm)

24 tháng 7 2020

A B C D E F

vẽ AD,BE, CF là các đường cao của tam giác ABC

\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)

ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)

tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)

do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)

\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)

\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)

do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều