Chứng minh rằng n = 5 ^ 0 + 5 ^ 1 + + 5 ^ 2019 chia hết cho 126 ;chia hết cho 30
bai nay co hai y lan nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
chứng minh chia hết cho 3 nè
s=\(2+2^2+2^3+...+2^{100}\)
s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
s=\(2.3+2^2.3+...+2^{99}.3\)
s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)
chứng minh chia hết cho 5
s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
s=\(2.15+...+2^{97}.15\)
s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5
mong là có thể giúp được bạn
S=5+5^2+5^3+....+5^96=
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)=
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126
5+5^2+5^3+...+5^2006=(5+5^4)+(5^2+5^5)+(5^3+5^6)+...+(5^2003+5^2006). =5.(1+5^3)+5^2.(1+5^3)+5^3.(1+5^3)+...+5^2003.(1+5^3).
= 5.126+5^2.126+5^3.125+...+5^2003.126
=126.(5+5^2+5^3+...+5^2003)chia hết cho 126. Vậy 5+5^2+5^3+...+5^2006 chia hết cho 126
\(\frac{3x-3}{6}=\frac{2y+10}{10}=\frac{5z-10}{15}=\frac{3x+2y-5z+17}{1}=\frac{3x+2y-5z+16+1}{1}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{y+5}{5}=1\\\frac{z-2}{3}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=0\\z=5\end{matrix}\right.\)
\(\Rightarrow P=3^{2019}+5^{2019}\)
Ta có \(3\equiv-1\left(mod4\right)\Rightarrow3^{2019}\equiv-1\left(mod4\right)\)
\(5\equiv1\left(mod4\right)\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow P\equiv\left(-1+1\right)\left(mod4\right)\Rightarrow P\equiv0\left(mod4\right)\Rightarrow P⋮4\)
\(n=5^0+5^1+...+5^{2019}\)
\(n=\left(5^0+5^3\right)+\left(5^1+5^4\right)+...+\left(5^{2016}+5^{2019}\right)\)
\(n=\left(5^0+5^3\right)+5\left(5^0+5^3\right)+...+5^{2016}\left(5^0+5^3\right)\)
\(n=126+5\cdot126+...+5^{2016}\cdot126\)
\(n=126\left(1+5+...+5^{2016}\right)⋮126\) (đpcm)
________
\(n=5^0+5^1+...+5^{2019}\)
\(n=5^0+\left(5^1+5^2\right)+...+\left(5^{2017}+5^{2018}\right)+5^{2019}\)
\(n=5^0+\left(5^1+5^2\right)+...+5^{2016}\left(5^1+5^2\right)+5^{2019}\)
\(n=5^0+30+...+5^{2016}\cdot30+5^{2019}\)
\(n=5^0+30\left(1+5^2+...+5^{2016}\right)+5^{2019}\)
Đến đây bí =))
Cbht