K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

Sửa đề \(A=\frac{x^2}{x+y^2}+\frac{y^2}{y+z^2}+\frac{z^2}{z+x^2}\)

Ta có \(\frac{x^2}{x+y^2}=\frac{x^2+xy^2-xy^2}{x+y^2}=x-\frac{xy^2}{x+y^2}\)

Mà \(x+y^2\ge2y\sqrt{x}\)

=> \(\frac{x^2}{x+y^2}\ge x-\frac{\sqrt{x}}{2}\ge\frac{3x}{4}-\frac{1}{4}\)

=> \(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}=\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)

Min A=3/2 khi x=y=z=1

4 tháng 10 2017

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

4 tháng 10 2017

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.

8 tháng 5 2021

SEIFWJNHGRHFQ24FTW

31 tháng 8 2016

ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)(dấu = xảy ra khi \(\left(y+z\right)^2=4x^2\)↔y+z=2x)

tương tự ta có:\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)(dấu = cũng xảy ra khi x+z=2y;x+y=2z)

cộng từng vế ta có:P+\(\frac{x+y+z}{2}\ge x+y+z\)

→P\(\ge\frac{x+y+z}{2}\)mà x+y+x=1

\(P\ge\frac{1}{2}\)\(\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}\)→x=y=z=1/3

10 tháng 11 2019

\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)

Tương tự và cộng lại:

\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\("="\Leftrightarrow x=y=z=1\)