K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Quá dễ Quá đơn giản

10 tháng 11 2017

giúp minh bài này với mai tớ nộp rùi

31 tháng 7 2015

Với n=2k thì (2k+1993^1994)(2k+1994^1993) chia hết cho 2 vì thừa số 2k+1994^1993 có 2k chia hết cho 2, 1994^1993 chia hết cho 2 (Vì 1994 chia hết cho 2)

Với n=2k+1 thì (2k+1993^1994+1)(2k+1+1994^1993) chia hết cho 2 vì thừa số 2k+1993^1994+1 có 1993^1994 lẻ, 1 lẻ nên 1993^1994+1 chẵn => 2k+1993^1994+1 chia hết cho 2.

Từ các điều trên ta có đpcm

15 tháng 11 2019

vì \(n-1⋮n-1\)\(\Rightarrow2\left(n-1\right)⋮n-1\)\(\Rightarrow2n-2⋮n-1\)

\(\Leftrightarrow\left(2n+3\right)-\left(2n-2\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)mà \(x\in N\)

\(n-1\in\left\{1;5\right\}\)

ta có bảng:

n-115
n26

vậy \(x\in\left\{2;6\right\}\)

15 tháng 11 2019

Có:

2n+3=2(n-1)+5

Vì 2(n-1) chia hết cho n-1

=>5 chia hết cho n-1

=>n-1 là Ư(5)

=>Ư(5)={-1;1;-5;5}

NX:

+)n-1=-1=>n=0(tm)

+)n-1=1=>n=2(tm)

+)n-1=-5=>n=-4(loại)

+)n-1=5=>n=6(tm)

Vậy...

16 tháng 6 2020

2n - 3 chia hết cho n + 1

=> 2(n+1) - 5 chia hết cho n + 1

=> 5 chia hết cho n + 1 

=> n + 1 thuộc Ư(5) = { -5 ; -1; 1 ; 5 }

n+1-5-115
n-6-204

Theo bài ra ta có 

\(2x-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow-5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 11-15-5
n0-24-6
DD
10 tháng 5 2021

Giả sử \(m\ge n\).

Ta có: \(2^{2m}+2^{2n}=4^m+4^n=4^n\left(4^{m-n}+1\right)\).

Đặt \(4^{m-n}+1=l^2\Leftrightarrow4^{m-n}=\left(l-1\right)\left(l+1\right)\)

Dễ thấy với các trường hợp của \(m-n\)thì không có \(l\)thỏa mãn. 

Vậy phương trình vô nghiệm. 

10 tháng 5 2021

Bạn giải chi tiết hợn được không?

4 tháng 12 2021

m và n thuộc N*

18 tháng 3 2018

n = { 3, -3 , -8

18 tháng 3 2018

Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)

Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)

\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)

\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)

\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)

Do \(2n-5⋮2n-5\)

\(\Rightarrow21⋮\left(2n-5\right)\)

\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)

Ta có bảng sau:

2n-5-21-7-3-113721
2n-16-224681226
n-8-11234613

Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)