Chứng minh rằng P= 10^ n -18 n - 1 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Tiếp theo làm tương tự câu trên .
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
\(P=10^n-18n-1\)
\(=\left(10^n-1\right)-9.2n\)
\(=99...9-9.2n\)
( 9 chữ số 9 )
Vì \(\hept{\begin{cases}99...9\left(nso9\right)⋮9\\9.2n⋮9\end{cases}}\)
\(\Rightarrow\left(99...9-9.2n\right)⋮9\)
( n chữ số 9 )
Hay \(P⋮9\left(đpcm\right)\)
Sửa cho anh chút dòng 3 là
99...9
( n sô 9 ) nha