K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

9 tháng 6 2016

b, \(a+b+2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\) ( Vì a, b >= 0 )

c, \(a+b-2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}-2\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)( Vì a, b >= 0 )

22 tháng 9 2019

Áp dụng BDDT Cô - si:

\(a+b\ge2\sqrt{ab}\)\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\)

Tương tự

18 tháng 4 2017

a)  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)

c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)

TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH

21 tháng 3 2018

Từng câu thôi bạn!

Ta có: a+b+c=0

a3 + a2c - abc + b2c + b3

=(a3+a2b+a2c)-(a2b+ab2+abc)+(b2c+b3+ab2)

=a2(a+b+c)-ab(a+b+c)+b2(a+b+c)

=0

23 tháng 8 2016

Với a>b:

a=b+m(m số tự nhiên bất kì.

b+m phần b bằng 1 cộng m phần b.

Mà m phần b lớn hơn 0 nên nó lớn hơn 1.

Với ngược lại chứng minh tương tự thôi.

Chúc em học tốt^^

23 tháng 8 2016

Với a>b:

a=b+m(m số tự nhiên bất kì.

b+m phần b bằng 1 cộng m phần b.

Mà m phần b lớn hơn 0 nên nó lớn hơn 1.

Với ngược lại chứng minh tương tự thôi.

Chúc em học tốt^^