tìm giá trị nhỏ nhất của biểu thức
a)M= \(2a^2+4a+7\)
b)N=\(a^2-a+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
\(A=a^4+2a^3+5a^2+4a+4\\ A=\left(a^4+a^3+a^2\right)+\left(a^3+a^2+a\right)+\left(3a^2+3a+3\right)+1\\ A=a^2\left(a^2+a+1\right)+a\left(a^2+a+1\right)+3\left(a^2+a+1\right)+1\\ A=\left(a^2+a+3\right)\left(a^2+a+1\right)+1\\ A=x\left(x+2\right)+1=x^2+2x+1=\left(x+1\right)^2\)
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
https://hoc24.vn/cau-hoi/co-the-dung-mot-can-dia-co-hai-dia-can-voi-nam-qua-cancac-qua-can-chi-de-o-mot-dia-can-de-can-tat-ca-cac-vat-co-khoi-luong-la-mot-so-tu-nhien-tu-1kg-den-30kg-duoc-khongcac-ban-giai-giup-mk-voi.341565384997
Thầy giải giúp e với ạ,e cảm ơn thầy ạ! <3
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) \(M=2a^2+4a+7\)
\(M=2\left(a^2+2a+\frac{7}{2}\right)\)
\(M=2\left(a^2+2.a.1+1+\frac{5}{2}\right)\)
\(M=2\left(a^2+2.a.1+1\right)+2.\frac{5}{2}\)
\(M=2\left(a+1\right)^2+5\ge5\)
Dấu = xảy ra khi :
\(a+1=0\Leftrightarrow a=-1\)
Vậy Mmin = 5 tại x = -1
# Ko bt có đúng ko nữa.....
a) M= a^2+a^2+2a+2a+1+1+5
=(a^2+2a+1)+(a^2+2a+1)+5
=(a+1)^2+(a+1)^2+5
với mọi a cs:
(a+1)^2 > 0
(a+1)^2 > 0
=> (a+1)^2+(a+1)^2 > 0
=> (a+1)^2+(a+1)^2+5 > 5
=> M > 5
dấu = xảy ra <=> (a+1)^2=0
<=> a+1=0
<=> a=-1
Vậy GTNN của M=5 khi a=-1