K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

ĐK: \(x\ge1\)

\(\sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1}\)

\(\Leftrightarrow5x-1-2\sqrt{\left(5x-1\right)\left(3x-2\right)}+3x-2=x-1\)

\(\Leftrightarrow7x-4-2\sqrt{\left(5x-1\right)\left(3x-2\right)}=0\)

\(\Leftrightarrow7x-4=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow49x^2-56x+16=4\left(15x^2-13x+2\right)\)

\(\Leftrightarrow-11x^2-4x+8=0\)

\(\Leftrightarrow-11\left(x^2+\frac{4}{11}-\frac{8}{11}\right)=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{2}{11}+\frac{4}{121}-\frac{92}{121}=0\)

\(\Leftrightarrow\left(x+\frac{2}{11}\right)^2=\frac{92}{121}=\left(\frac{\pm\sqrt{92}}{11}\right)^2\)

\(\Leftrightarrow x=\frac{\pm\sqrt{92}-2}{11}\)( không thỏa ĐK )

Vậy pt vô nghiệm

17 tháng 7 2019

chết rồi làm nhầm :((

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
ĐKXĐ:.........

PT \(\Leftrightarrow 3(x^2-x)+[(x+1)-\sqrt{3x+1}]+[(x+2)-\sqrt{5x+4}]=0\)

\(\Leftrightarrow 3(x^2-x)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow (x^2-x)\left[3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right]=0\)

Dễ thấy với $x\geq \frac{-1}{3}$ thì biểu thức trong ngoặc vuông luôn dương 

$\Rightarrow x^2-x=0$

$\Leftrightarrow x(x-1)=0$

$\Rightarrow x=0$ hoặc $x=1$ (đều tm)

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

16 tháng 3 2022

1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)

\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)

\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)

22 tháng 3 2021

a, 3x - 7 = 0

<=> 3x = 7

<=> x = 7/3

b, 8 - 5x = 0

<=> -5x = -8

<=> x = 8/5

c, 3x - 2 = 5x + 8

<=> -2x = 10

<=> x = -5

e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)

6 tháng 1 2021

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)