TÌM GTNN CỦA BIỂU THỨC
2x2 + 2x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Lời giải:
ĐKXĐ: $x\geq 0$
Ta thấy: $\sqrt{x}\geq 0; 2x+1>0$ với mọi $x\geq 0$
$\Rightarrow \frac{\sqrt{x}}{2x+1}\geq 0$
Vậy GTNN của biểu thức là $0$. Giá trị này đạt được khi $x=0$
Đặt \(P=\dfrac{2x^2+x}{\left(x+1\right)^2}\Rightarrow P+\dfrac{1}{4}=\dfrac{9x^2+6x+1}{4\left(x+1\right)^2}=\dfrac{\left(3x+1\right)^2}{4\left(x+1\right)^2}\ge0\).
Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{3}\).
Vậy..
Ta có: \(A=\left|2x-1\right|+5\ge5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x-1\right|=0\Rightarrow x=\frac{1}{2}\)
Vậy Min(A) = 5 khi x = 1/2
GTNN=1
\(2x^2+2x+1=\frac{2\left(2x^2+2x+1\right)}{2}\)
\(=\frac{4x^2+4x+2}{2}\)
\(=\frac{\left(2x+1\right)^2+1}{2}\)
Để \(2x^2+2x+1\)nhỏ nhất thì \(\left(2x+1\right)^2+1\)nhỏ nhất
\(\left(2x+1\right)^2+1\ge1\)
Dấu bằng xảy ra khi \(x=-\frac{1}{2}\)
Vậy GTNN của biểu thức là \(\frac{1}{2}\)khi \(x=-\frac{1}{2}\)