1/Tìm x biết:
Giá trị tuyệt đối của x - 1 = 2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left|x-1\right|+\left|x+1\right|+\left|x-2\right|+\left|x-3\right|\ge\left|1-x+x+1\right|+\left|2-x+x-3\right|=3\)
Dấu ''='' xảy ra khi \(\left(1-x\right)\left(x+1\right)\ge0;\left(2-x\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le1;2\le x\le3\Leftrightarrow-1\le x\le3\)
Vậy GTNN của A bằng 3 tại -1 =< x =< 3
b, \(B=\left|x+1\right|+\left|x-1\right|+\left|2x-5\right|\ge\left|x+1+x-1\right|+\left|2x-5\right|\)
\(=\left|2x\right|+\left|2x-5\right|=\left|2x\right|+\left|5-2x\right|\ge\left|2x+5-2x\right|=5\)
Dấu ''='' xảy ra khi \(\left(x+1\right)\left(x-1\right)\ge0;2x\left(5-2x\right)\ge0\Leftrightarrow;0\le x\le\frac{5}{2}\)
Vậy GTNN của B bằng 5 tại 0 =< x =< 5/2
\(E=\left|3x-1\right|+\left|2x-1\right|+\left|x-1\right|=\left|3x-1\right|+\left|1-2x\right|+\left|x-1\right|\)
Theo BĐT chứa dấu GTTĐ : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(E\ge\left|3x-1+1-2x\right|+\left|x-1\right|=\left|x\right|+\left|x+1\right|=\left|x\right|+\left|-x-1\right|\)
\(\ge\left|x-x-1\right|=\left|-1\right|=1\)
Dấu ''='' xảy ra khi \(\left(3x-1\right)\left(1-2x\right)\ge0;x\left(-x-1\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{1}{2};-1\le x\le0\Leftrightarrow-1\le x\le\frac{1}{2}\)
Vậy GTNN của E bằng 1 tại -1 =< x =< 1/2
sai dòng 3 rồi nhé, mình sửa bài
\(E\ge\left|3x-1+1-2x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)
Dấu ''='' xảy ra khi \(\left(3x-1\right)\left(1-2x\right)\ge0;x\left(1-x\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{1}{2};0\le x\le1\Leftrightarrow0\le x\le1\)
Vậy GTNN của E bằng 1 tại 0 =< x =< 1
1-2x =8
=> 2x = 1-8
=> 2x = -7
=>x =-7 : 2
=> x = -3,5
Vậy tac có:
2x-1+ /-3,5/
= 2x-1+ 3,5 = 2x- 4,5
ko hiểu đè bài lám nên làm sai bỏ qua nhá :>>>
Ta có: |2x-1|+|1-2x|=8
\(\Leftrightarrow\left|2x-1\right|+\left|2x-1\right|=8\)(Vì 2x-1 và 1-2x là hai số đối nhau)
\(\Leftrightarrow2\left|2x-1\right|=8\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
|x - 1| = 2x
<=> x - 1 = 2x hoặc x - 1 = -2x
x - 1 - 2x = 0 x - 1 + 2x = 0
-x - 1 = 0 3x - 1 = 0
-x = 0 + 1 3x = 0 + 1
-x = 1 3x = 1
x = -1 x = 1/3
<=> x = -1 (ktm); x = 1/3 (tm)
=> x = 1/3
\(\left|x-1\right|=2x\)
\(TH1:x-1\ge0\Leftrightarrow x\ge1\)
Khi đó:\(\left|x-1\right|=2x\)
\(\Leftrightarrow x-1=2x\)
\(\Leftrightarrow x-2x=1\)
\(\Leftrightarrow-x=1\)
\(\Leftrightarrow x=-1\left(\text{loại vì không thỏa mãn điều kiện}\right)\)
\(TH2:x-1< 0\Leftrightarrow x< 1\)
Khi đó:\(\left|x-1\right|=2x\)
\(\Leftrightarrow-\left(x-1\right)=2x\)
\(\Leftrightarrow-x+1=2x\)
\(\Leftrightarrow-x-2x=-1\)
\(\Leftrightarrow-3x=-1\)
\(x=\frac{-1}{-3}=\frac{1}{3}\left(\text{nhận vì thỏa mãn điều kiện}\right)\)
Vậy \(S=\left\{\frac{1}{3}\right\}\)