K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(x^2+4x-3m+1=0\)

Để (1) có 2 nghiệm phân biệt x1, x2 thì \(\Delta'=2^2-\left(3m+1\right)=-3m+3>0\)\(\Leftrightarrow\)\(m< 1\)

a) pt (1) có 1 nghiệm âm => nghiệm còn lại dương => 2 nghiệm trái dấu => \(x_1x_2< 0\)

Vi-et: \(x_1x_2=1-3m< 0\)\(\Leftrightarrow\)\(m< \frac{1}{3}\)

b) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}x_1=-2-\sqrt{3-3m}\\x_1=-2+\sqrt{3-3m}\end{cases}}\)

Dễ thấy \(x_1< x_2\) nên ta cần tìm m để \(x_2=-2+\sqrt{3-3m}< 2\)

\(\Leftrightarrow\)\(\sqrt{3-3m}< 4\)\(\Leftrightarrow\)\(m>\frac{-13}{3}\)

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

NV
22 tháng 3 2023

\(\Delta'=1-4\left(2m-4\right)>0\Rightarrow m< \dfrac{17}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=2m-4\end{matrix}\right.\)

Từ \(x_1+x_2=-1\Rightarrow x_2=-1-x_1\)

Thế vào \(x_1^2=2x_2+5\)

\(\Rightarrow x_1^2=2\left(-1-x_1\right)+5\)

\(\Leftrightarrow x_1^2+2x_1-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-2\\x_1=-3\Rightarrow x_2=2\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-4\)

\(\Rightarrow\left[{}\begin{matrix}2m-4=-2\\2m-4=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)

21 tháng 4 2016

CHÀO BẠN

Áp dụng Viét

  1. x1*x2=4m (1)
  2. x1+x2=2(m+1) (2)

(*)       (x1+m)(x2+m)=3m^2+12

<=>x1*x2+m(x1+x2)=3m^2+12  (**)

thay (1);(2) vô (**) =>....

Mình bày hướng có chỗ nào sai tự sửa

\(a,\) \(x^2+5x-3m=0\left(1\right)\)

 \(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)

\(Để\) phương trình \((1)\) có 2 nghiệm  \(x_1,x_2\) ta có :

\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)

\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)

 

 

22 tháng 2

a) x²+5x−3m=0 ⇒Δ=b²−4ac=52−4·(−3m)=12m+25

Để phương trình có 2 nghiệm $x_{1}$, $x_{2}$ ta có :

⇔Δ≥0⇒12m+25≥0

⇒12m≥−25

⇒m≥$\frac{-25}{12}$

b) Theo Viète ta có:

$\left \{ {{x_{1}+x_{2}=-5} \atop {x_{1}x_{2}=-3m}} \right. $

Ta có: $\frac{2}{x_{1}}$ + $\frac{2}{x_{2}}$ = $\frac{2x_{1} + 2x_{2}}{x_{1}^{2}x_{2}^{2}}$ = $\frac{2(x_{1}^{2}+x_{2}^{2})}{(x_{1}x_{1})^{2}}$ = $\frac{50+12m}{9m^2}$

$\frac{2}{x_{1}}$ · $\frac{2}{x_{2}}$ = $\frac{4}{(x_{1}x_{1})^{2}}$ =$\frac{4}{9m^2}$

Vậy $\frac{2}{x_{1}}$ và $\frac{2}{x_{2}}$ là 2 $n_{0}$ của phương trình:

${x^2}$ - $\frac{50+12m}{9m^2}$ $x$ + $\frac{4}{9m^2}$ = 0