K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

h)Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt\(x^2+7x+11=y\)

\(=>p\left(x\right)=\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)

Thay \(y=x^2+7x+11\) vào ta có : \(p\left(x\right)=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

16 tháng 7 2019

\(f)m\left(x\right)=x^6+27=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)

e)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12=\left(x^2+x\right)\left(x^2+x-2\right)+6\left(x^2+x-12\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)=\left(x^2+x+6\right)\left(x^2-x+2x-2\right)=\left(x^2+x+6\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

16 tháng 7 2019

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

21 tháng 8 2016

a)A=(x2+2x)+9x2+18x+20

=(x2+2x)+9(x2+2x)+20

Đặt t=x2+2x đc:

t+9t+20=10t+20=10(t+2)

Thay t=x2+2x vào đc:

10(x2+2x+2)

 

21 tháng 8 2016

b sai đề

trả lời 

(1265) Phương pháp hệ số bất định - Toán lớp 8 - thầy Tạ Anh Sơn - HOCMAI - YouTube

ví dụ ở đó luôn 

vào thống kê hỏi đáp 

hc tốt 

Phương pháp đồng nhất hệ số (phương pháp hệ số bất định) có cơ sở như sau:
Hai đa thức (dạng thu gọn ) là đồng nhất khi và chỉ khi mọi hệ số của các đơn thức đồng dạng trong hai đa thức phải bằng nhau

VD ax2+bx+c=2x2+5x+3 trong đó a,b,c là hằng số, x là ẩn

=> \(\hept{\begin{cases}a=2\\b=5\\c=3\end{cases}}\)

Đa thức bậc 3,4 tương tự nhé

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

20 tháng 8 2018

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

đặt \(t=x^2+7x+10\Rightarrow x^2+7x+12=t+2\)

\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)=\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)