Tìm GTNN của: x^2-10x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = x4 - 6x3 + 10x2 - 6x + 9
M = (x2 - 6x + 9) + x4 - 6x3 + 9x2
M = (x - 3)2 + x2(x2 - 6x + 9)
M = (x - 3)2.(1 + x2)
Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)
\(\Rightarrow M\ge1\)
Dấu 'x' xảy ra khi:
\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Mmin = 1 khi x = 3
Chúc bạn học tốt!!!
Mình giải lại từ dòng số 6 nhé!!!
=> M = 0
Dấu '=' xảy ra khi:
(x - 3)2 = 0 => x - 3 = 0
=> x = 3
Vậy Mmin = 0 khi x = 3
\(4x^2-10x-4=\left(2x-\dfrac{5}{2}\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{5}{4}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
\(=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ =\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\\ =\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy GTNN của biểu thức là 2
\(\Leftrightarrow Qx^2+Q=10x^2+8x+4\)
\(\Leftrightarrow x^2\left(Q-10\right)-8x+Q-4=0\)(1)
*Neu Q = 10 thi x = ... (ban tu tinh nha)
*Neu Q # 10 thi pt (1) co nghiem khi va chi khi Delta' >
Ta co \(\Delta'\ge0\)
\(\Leftrightarrow16-\left(Q-10\right)\left(Q-4\right)\ge0\)
\(\Leftrightarrow16-Q^2+14Q-40\ge0\)
\(\Leftrightarrow-Q^2+14Q-24\ge0\)
\(\Leftrightarrow2\le Q\le12\)
Ban tu tim dau "=" nha
\(A=x^4+4x^3+10x^2+12x=x^4+4x^2+9+4x^3+12x+6x^2-9\)
<=>\(A=x^4+4x^2+9+4x^3+12x+6x^2-9\)
<=>\(A=\left(x^2\right)^2+\left(2x\right)^2+3^2+2.x^2.2x+2.2x.3+2.x^2.3-9\)
<=>\(A=\left(x^2+2x+3\right)^2-9\)
<=>\(A=\left[\left(x+1\right)^2+2\right]^2-9\)
Vì \(\left(x+1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge2\Leftrightarrow\left[\left(x+1\right)^2+2\right]^2\ge4\)\(\Leftrightarrow A=\left[\left(x+1\right)^2+2\right]^2-9\ge-5\)
=>Amin=-5 <=> x=-1
Vậy Amin=5 tại x=-1
\(\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow4x=3y\)
\(\Rightarrow\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=4\\y=-4\end{cases}}\)
=x^2-10+25-21
=(x-5)^2-21
mà x-5)^2>=0
suy ra (x-5)^2-21>=-21 suy ra GTNN của bt trên là -21
khix= 5