K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

m: \(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-2-\sqrt{3}\)

\(=\sqrt{3}+2-\sqrt{2}-2-\sqrt{3}=-\sqrt{2}\)

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)

 

11 tháng 11 2021

\(a,=5\sqrt{2}-3\sqrt{2}+6\sqrt{2}=8\sqrt{2}\\ b,=\dfrac{5\sqrt{3}}{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}=\dfrac{5\sqrt{3}}{3}-\sqrt{3}+1=\dfrac{5\sqrt{3}-3\sqrt{3}+3}{3}=\dfrac{2\sqrt{3}+3}{3}\)

13 tháng 8 2020

để ý và chịu khó tách 1 chút là ra 

\(\frac{1+\sqrt{5}}{\sqrt{15}-\sqrt{5}+\sqrt{3}-1}\)

\(=\frac{1+\sqrt{5}}{\sqrt{3}.\sqrt{5}-\sqrt{5}+\sqrt{3}-1}\)

\(=\frac{1+\sqrt{5}}{\sqrt{5}\left(\sqrt{3}-1\right)+\left(\sqrt{3}-1\right)}\)

\(=\frac{1+\sqrt{5}}{\left(\sqrt{5}+1\right)\left(\sqrt{3}-1\right)}=\frac{1}{\sqrt{3}-1}\)

13 tháng 8 2020

\(\frac{1+\sqrt{5}}{\sqrt{15}-\sqrt{5}+\sqrt{3}-1}=\frac{\sqrt{5}+1}{\sqrt{5}\left(\sqrt{3}-1\right)+\left(\sqrt{3}-1\right)}\)

\(=\frac{\sqrt{5}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)}=\frac{1}{\sqrt{3}-1}\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2022

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

15 tháng 8 2016

Ta có : \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

Thay \(x=4-\sqrt{15}\) vào pt được : 

\(\left(4-\sqrt{15}\right)^2.a+\left(4-\sqrt{15}\right)b+1=0\Leftrightarrow\left(31-8\sqrt{15}\right)a+\left(4-\sqrt{15}\right)b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(-8a-b\right)+\left(31a+4b+1\right)=0\)

Vì a,b là số hữu tỉ nên ta có : \(\begin{cases}8a+b=0\\31a+4b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=-8\end{cases}\)

15 tháng 8 2016

Ta có:\(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

Thay vào ta có:

\(a\cdot\left(4-\sqrt{15}\right)^2+b\cdot\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\cdot\left(31-8\cdot\sqrt{15}\right)+4b-b\cdot\sqrt{15}+1=0\)

\(\Leftrightarrow\left(31a+4b+1\right)-\left(8a+b\right)\cdot\sqrt{15}=0\)

Do a,b hữu tỉ \(\Rightarrow\begin{cases}31a+4b+1=0\\8a+b=0\end{cases}\)\(\Leftrightarrow\begin{cases}31a-32a+1=0\\b=-8a\left(1\right)\end{cases}\)

31a-3a+1=0 <=>a=1.Từ (1) =>b=-8

Vậy  a= 1 và b= -8

 

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

9 tháng 8 2018

Mình cần gấp nha mn 😭😭 

22 tháng 7 2020

1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)