1) Tìm GTNN của bt :
A=(x-1)(2x-1)(2x2-3x-1)+2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\dfrac{1}{x}=3\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\\ \Leftrightarrow x^3+\left(\dfrac{1}{x}\right)^3+3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}+3\cdot3=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
\(A=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(y+x+1\right)^2+\left(x-2\right)^2-2\ge-2\)
\(minA=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(P=x^3+2021xy+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+2021xy\)
\(=\left(\dfrac{2021}{3}\right)^3\)
\(=\dfrac{8254655261}{27}\)
a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)
\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)
c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)
d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)
\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: Ta có: \(4x^2+12x+1\)
\(=4x^2+12x+9-8\)
\(=\left(2x+3\right)^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
b: Ta có: \(4x^2-3x+10\)
\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)
\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)
c: Ta có: \(2x^2+5x+10\)
\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
\(S=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}\)
\(=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
=> MIN S = 2
Dấu "=" xảy ra <=> x - 2 = 0
<=> x = 2
Vậy Min S = 2 khi x = 2
a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(x=\frac{-5}{2}=-2,5\)
Vậy GTLN của A bằng -13,5 khi x = -2,5
b) \(B=3x-2x^2\)
\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)
\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x-0,75=0\)
\(x=0,75\)
Vậy GTLN của B bằng 1,125 khi x = 0,75
a) Tìm được x = 2,2
b) Tìm được x = 2073
c) Tìm được x = 4 hoặc x = -2
d) Điều kiện x≠-1 . Tìm được x = 0 hoặc x = 3
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2018\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2018\)
\(=\left(2x^2-3x\right)^2-1+2018\)
\(=\left(2x^2-3x\right)^2+2017\ge2017\)
\(minA=2017\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)