Cho tam giác ABC vuông cân tại A, M là điểm bất kì trên BC. Kẻ ME ⊥ AB tại E
MF ⊥ AC tại F.
a) Tứ giác AEMF là hình gì ? Vì sao ?
b) Kẻ AI ⊥ BC tại I. So sánh AM và AI
c) Xác định vị trí điểm M trên cạnh BC để độ dài đoạn EF ngắn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)
=>AM là tia phân giác của \(\widehat{BAC}\)
=>M là chân đường phân giác kẻ từ A xuống BC
a ,
Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .
b ,
Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB
Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .
-> AC là đường trung trực của MN
->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .
-> Tứ giác MANC là hình thoi.
c ,
Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)
Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .
-> AE = EB (2)
Vì tứ giác MANC là hình thoi nên AF=FC (3)
Từ (1),(2) và (3) suy ra BE = FC (4)
Từ (1) và (4) suy ra : AE + BE = AF + FC
hay AB = AC
-> Tam giác ABC là tam giác vuông cân .
Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .
Cho tui đúng nha
a) Xét tứ giác AEDF có
DE//AF(DE//AB, F\(\in\)AB)
DF//AE(DF//AC, E\(\in\)AC)
Do đó: AEDF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AEDF có \(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), F\(\in\)AB, E\(\in\)AC)
nên AEDF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Hình chữ nhật AEDF trở thành hình vuông khi AD là tia phân giác của \(\widehat{FAE}\)
hay AD là tia phân giác của \(\widehat{BAC}\))
Vậy: Khi D là chân đường phân giác kẻ từ A xuống cạnh BC thì tứ giác AEDF trở thành hình vuông
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
a; Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
=>AEMF là hình chữ nhật
b: Xét ΔBAC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét tứ giác AMBN có
E là trung điẻm chung của AB và MN
MA=MB
=>AMBN là hình thoi
c: Để AMBN là hình vuông thì góc AMB=90 độ
=>góc B=45 độ
d: AM=5cm
=>AN=5cm
MN=AC=căn 10^2-8^2=6cm
\(P=\dfrac{5+5+6}{2}=8\left(cm\right)\)
\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot2\cdot3\cdot3}=4\cdot3=12\left(cm^2\right)\)
a: Xét tứ giác AEDF có
AE//DF
DE//FA
Do đó: AEDF là hình bình hành
mà \(\widehat{A}=90^0\)
nên AEDF là hình chữ nhật
a: Xét tứ giác AEMF có
\(\widehat{FAE}=\widehat{AFM}=\widehat{AEM}=90^0\)
Do đó: AEMF là hình chữ nhật
b: Xét ΔAIM vuông tại I có AM là cạnh huyền
nên AM>AI