Cho a,b,c \(\in\)R và a,b,c khác 0 thỏa mãn\(b^2\)= ac . CMR :
\(\frac{a}{c}=\frac{\left(a+2015b\right)^2}{\left(b+2015c\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)
sau đó chứng minh tương tự và cộng theo từng vế thôi
Ta có b^2=ac =>a/b=c/d. Đặt a/b=c/d=k(khác 0) =>a=bk;b=ck =>a/c=c.k^2/c=k^2 (1) (a+2015b)^2/(b+2015c)^2=(bk+2015b/ck+2015c)^2=(b(k+2015)/(c(k+2015))^2=(b/c)^2=(ck/c)^2=k^2 (2) Từ (1) và (2) => a/c=(a+2015b/b+2015c)^2 => (đpcm)
Ta có:\(b^2=ac\Leftrightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\)
Mà\(\frac{a}{b}=\frac{b}{c}=\frac{2015b}{2015c}=\frac{a+2015b}{b+2015c}\)
Nên suy ra\(\frac{a}{c}=\frac{a^2}{b^2}=\left(\frac{a+2015b}{b+2015c}\right)^2=\frac{\left(a+2015b\right)^2}{\left(b+2015c\right)^2}\)
Vậy\(\frac{a}{c}=\frac{\left(a+2015b\right)^2}{\left(b+2015c\right)^2}\left(đpcm\right)\)