Cho A = \(\frac{2014}{2014+1975}+\frac{1975}{1975+1963}+\frac{1963}{1963+2014}\) . Hãy so sánh A với 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
=(1975/1976+2010/2011+1963/1968)x(4/12-3/12-1/12)
=(1975/1976+2010/2011+1963/1968)x0
=0
Sửa đề:
\(\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{4-3-1}{12}\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{0}{12}\)
\(=0\)
Tạm thời chỉ nghĩ ra được cách này -_-
Ta có :
\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\)
\(A=\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2014+2}{2014}\)
\(A=\frac{2015}{2015}-\frac{1}{2015}+\frac{2016}{2016}-\frac{1}{2016}+\frac{2014}{2014}+\frac{2}{2014}\)
\(A=1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{2}{2014}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}-\frac{2}{2014}\right)\)
\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]\)
Lại có :
\(\frac{1}{2015}< \frac{1}{2014}\)
\(\frac{1}{2016}< \frac{1}{2014}\)
\(\Rightarrow\)\(\frac{1}{2015}+\frac{1}{2016}< \frac{1}{2014}+\frac{1}{2014}\)
\(\Rightarrow\)\(\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)< 0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]>3\)
Vậy \(A>3\)
Chúc bạn học tốt ~
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)
Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)
\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)
=> A > 1+ 1 + 1 = 3
= ( - 1975 ) - 2014 + 1975
= [ ( - 1975 ) + 1975 ] - 2014
= 0 - 2014
= - 2014
= -1975-2014+1975
=(-1975+1975)-2014
=-2014
bỏ ngoặc đằng trước có dấu trừ thì đổi dấu các số có măt trong ngoặc, rồi nhóm các số giống nhau nhưng trái dấu rồi thực hiện phép tính tong ngoặc thì bằng 0 vav thực hiện các phép tính còn lại ở ngoài ngoặc.
Ta có : \(\frac{2014}{2014+1975}< \frac{2014}{1963+2014};\frac{1975}{1963+1975}< 1\)
Vậy: \(A< \frac{2014}{1963+2014}+\frac{1963}{1963+2014}+1\)
\(A< \frac{2014+1963}{1963+2014}+1\)
\(A< 2\)
Cbht
Ta có: \(\frac{2014}{2014+1975}< \frac{2014}{1963+2014}\)
Và \(\frac{1975}{1963+1975}< 1\)
Nên \(A< \frac{2014}{1963+2014}+\frac{1963}{1963+2014}+1\)
\(A< \frac{2014+1963}{1963+2014}+1\)
\(\Rightarrow A< 1+1\) \(\Rightarrow A< 2\)
Vậy: \(A< 2\)
Good luck !!! Rất vui vì giúp đc bạn bạn <3