Cho tam giác nhọn ABC, AH là đường cao.
a/Chứng minh \(AB^2+CH^2=AC^2+BH^2\)
b/Gọi M, N theo thứ tự là hình chiếu của H trên AB và AC. Chứng minh \(\widehat{AMN}=\widehat{ACB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Do\Delta\)vuông AHC có:
AH2=AE.AC (1)
\(\Delta\) vuông AHB có:
AH2=AD.AB (2)
Từ (1) và (2) :
AE.AC =AD.AB
b, Xest \(\Delta\)AED và \(\Delta\)ABC có:
\(\widehat{BAC}\)chung
AE.AC=AD.AB (câu a)
=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)
=> Góc ADE = góc ACB ( điều phải chứng minh )
c, Do tam giác ADE đồng dạng với tam giác ABC
=> Góc E1 = Góc B1 (1)
Mà góc B1 + góc H1 = 90 độ ( tam giác BDH vuông tại D )
Góc H1 + Góc H2 = 90 độ ( tam giác AHB vuông tại D )
=> Góc B1 = Góc H2 (2)
Từ (1) và (2) : => Góc E1 = góc H2
Xét tam giác AOE và tam giác DOH có:
Góc O1 = Góc O2 ( 2 góc đối đỉnh )
Góc E1 = góc H2 ( chứng minh trên )
=> tam giác AOE đồng dạng với tam giác DOH (g-g)
=> \(\frac{OA}{OD}=\frac{OE}{OH}\)=> OA . OH = OD . OE
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
Suy ra: BC/BA=AC/AH
hay \(BC\cdot AH=BA\cdot AC\)
b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
góc HAM chung
Do đó: ΔAMH\(\sim\)ΔAHB