K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

B D O A Ê C H 1 2 2 1 1

\(a,Do\Delta\)vuông AHC có:

AH2=AE.AC (1)

\(\Delta\) vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest \(\Delta\)AED và \(\Delta\)ABC có:

\(\widehat{BAC}\)chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

=> Góc ADE = góc ACB ( điều phải chứng minh )

c, Do tam giác ADE đồng dạng với tam giác ABC 

=> Góc E1 = Góc B1 (1)

Mà góc B1 + góc H1 = 90 độ ( tam giác BDH vuông tại D )

Góc H1 + Góc H2 = 90 độ ( tam giác AHB vuông tại D )

=> Góc B1 = Góc H2 (2)

Từ (1) và (2) : => Góc E1 = góc H2 

Xét tam giác AOE và tam giác DOH có:

Góc O1 = Góc O2 ( 2 góc đối đỉnh )

Góc E1 = góc H2 ( chứng minh trên )

=> tam giác AOE đồng dạng với tam giác DOH (g-g)

=> \(\frac{OA}{OD}=\frac{OE}{OH}\)=> OA . OH = OD . OE

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

Suy ra: BC/BA=AC/AH

hay \(BC\cdot AH=BA\cdot AC\)

b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có

góc HAM chung

Do đó: ΔAMH\(\sim\)ΔAHB

22 tháng 12 2021

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)