OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính:
x+z+2/y=y+z+1/x=x+y-3=1/x+y+z
Please help me!!!
Thanks^^
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+y+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+y+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
Ta có :
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow y=\frac{5}{6}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
phải có 2 trường hợp
TH1 x+y+x=0
TH2 x+y+z khác 0 chứ
2) Cho các số x, y, z khác o. Biết rằng x(1/x + 1/y) + y(1/z + 1/x) + z(1/x + 1/y) = -2 và x3 + y3 + z3. Tính P = 1/x + 1/y 1/zAi nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
2) Cho các số x, y, z khác o. Biết rằng x(1/x + 1/y) + y(1/z + 1/x) + z(1/x + 1/y) = -2 và x3 + y3 + z3. Tính P = 1/x + 1/y 1/z Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Cho x/(y+z-5)=y/(x+z+3)=z/(x+y+2)=1/2.(x+y+z) tìm x y z help me
CMR: Nếu 1/x - 1/y - 1/z = 1 và x = y + z thì 1/x^2 + 1/y^2 + 1/z^2 = 1 Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
2) Cho các số thực x, y, z thỏa mãn đồng thời các điều kiện sau x + y + z = 2, x^2 + y^2 z^2 = 18 và xyz = -1. Tính giá trị của S = 1/(xy + z - 1) + 1/(yz + x -1) + 1/(zx + y -1)Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
x+y-1/z=y+z-1=z+x+2/y với x,y,z không bằng 0
help me now
Help me a)4X=5Y=32 va 4y=32 ,x-y+z=36 ; b)x-1/2=y-2=3-z/3 và x+y+z=12 c) x/9=y/2=z/-2 và xyz=4
\(\text{Cho các số thực dương x, y, z thỏa mãn: x2+y2+z2=1 CMR: (x−1)+(y−2)2+(z−3)4≥88 }\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
thanks người giúp
Giải các phương trình sau:
a)\(\hept{\begin{cases}x+y+xy=8\\y+z+yz=15\\z+x+zx=35\end{cases}}\)
b)\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
c) \(\hept{\begin{cases}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3-\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{cases}}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+y+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+y+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
Ta có :
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow y=\frac{5}{6}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
phải có 2 trường hợp
TH1 x+y+x=0
TH2 x+y+z khác 0 chứ