B=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4-2}}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4+2}}\)
Rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ bạn chép sai đề hình như đề bài phải là \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
ta xét \(A^3=\left(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\right)^3\)
<=> \(A^3=x^3-3x+3A\cdot\sqrt[3]{\frac{4}{4}}\)
<=> \(A^3=x^3-3x+3A\)
<=> \(A^3-3A-x^3+3x=0\)
<=>\(\left(A^3-x^3\right)-3A+3x=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2\right)-3\left(A-x\right)=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2-3\right)=0\)
<=> \(\orbr{\begin{cases}A=x\\A^2+Ax+x^2-3=0\end{cases}}\)(vô lí )
vậy \(A=x\)
Ta có:
A = \(\frac{1x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}\)
= \(\frac{\left(x-2\right)\left(x+1\right)^2+\left(x^2-1\right)\sqrt{x^2-4}}{\left(x+2\right)\left(x-1\right)^2+\left(x^2-1\right)\sqrt{x^2-4}}\)
= \(\frac{\sqrt{x-2}\left(x+1\right)\left(\sqrt{x-2}\left(x+1\right)+\sqrt{x+2}\left(x-1\right)\right)}{\sqrt{x+2}\left(x-1\right)\left(\sqrt{x-2}\left(x+1\right)+\sqrt{x+2}\left(x-1\right)\right)}\)
= \(\frac{\sqrt{x-2}\left(x+1\right)}{\sqrt{x+2}\left(x-1\right)}\)
help meeee
Please
Ơ, đây là môn Toán mà sao bạn lại đăng vào môn Ngữ Văn vậy?