K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

a)  2x-18

b)  6x-18

c)  (x-4)/2

d)  2-4x

e)  (-9-2x)/2

1 tháng 7 2021

a) (x+9)(x-9)-x2=x2-81-x2=-81

b) (10x-1)(10x+1)-(10x-1)2=100x2-1-100x2+20x-1=20x-2

d) (x-1)(x-2)-(x-2)(x+2)=x2-3x+2-x2+4=-3x+6

15 tháng 7 2023

\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)

\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)

\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)

\(A=2x+22\)

______________________

\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)

\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)

\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)

\(B=-8x-23\)

_________________

\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)

\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)

\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)

\(C=6x-5\)

15 tháng 7 2023

a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:

Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15

Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15

Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15

Kết quả cuối cùng:
A = 5x + 19

b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:

Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6

Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6

Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1

Kết quả cuối cùng:
B = -4x - 11

c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:

Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)

Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1

Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1

Kết quả cuối cùng:
C = 6x - 5

30 tháng 8 2021

a. (a2 - b2)2 - (a2 + b2)2

= (a2 - b2 - a2 - b2)(a2 - b2 + a2 + b2)

= -2b2 . 2a2

b. a6 - b6

<=> (a3)2 - (b3)2

<=> (a3 - b3)(a3 + b3)

30 tháng 8 2021

\(a,\left(a^2-b^2\right)^2-\left(a^2+b^2\right)^2\\ =a^4-2a^2b^2+b^4-a^4-2a^2b^2-b^4\\ =-4a^2b^2\)

\(b,a^6-b^6=a^2\left(a^3-b^3\right)=a^2\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(c,-4x^2+9y^2=\left(3y-2x\right)\left(3y+2x\right)\\ d,\left(x+1\right)^3-\left(2-x\right)^3\\ =\left(x+1-2+x\right)\left[\left(x+1\right)^2+\left(x+1\right)\left(2-x\right)+\left(2-x\right)^2\right]\\ =\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)\\ =\left(2x-1\right)\left(x^2-x+7\right)\)

\(e,8+\left(4x-3\right)^3\\ =\left(8+4x-3\right)\left[64-8\left(4x-3\right)+\left(4x-3\right)^2\right]\\ =\left(4x+5\right)\left(64-32x+24+16x^2-24x+9\right)\\ =\left(4x+5\right)\left(16x^2-56x+97\right)\)

\(g,81-\left(9-x^2\right)^2\\ =\left(9-9+x^2\right)\left(9+9-x^2\right)\\ =x^2\left(18-x^2\right)\left[=x^2\left(\sqrt{18}-x\right)\left(\sqrt{18}+x\right)\right]\)

Chỗ trong ngoặc nếu bạn chưa học căn thì ko cần ghi nha

19 tháng 7 2021

a) (2x+3)2-2(2x+3)(2x+5)+(2x+5)2

=4x2+12x+9-(4x+6)(2x+5)+4x2+20x+25

=4x2+12x+9-(8x2+12x+20x+30)+4x2+20x+25

=4x2+12x+9-8x2-12x-20x-30+4x2+20x+25

=4

b) (x2+x+1)(x2-x+1)(x2-1)

=((x2+1)2-x2)(x2-1)

=(x4+x2+1)(x2-1)

=x6+x4+x2-x4-x2-1

=x6-1

c)(a+b-c)2+(a-b+c)2-2(b-c)2

=a2+b2+c2+2ab-2ac-2bc+a2+b2+c2-2ab+2ac-2bc-2(b2-2bc+c2)

=2a2+2b2+2c2-4bc-2b2+4bc-2c2

=2a2

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2+2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2+4ab+4bc

 

 

19 tháng 7 2021

d) (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2

= a2+b2+c2+2ab+2ac+2bc+a2+b2+c2-2ab-2ac+2bc+a2+b2+c2-2bc-2ab+2ac+a2+b2+c2-2ac-2bc+2ab

=4a2+4b2+4c2

 

 

13 tháng 8 2023

a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))

\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)

\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)

\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)

\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)

\(A=\dfrac{-5}{x-3}\)

b) Ta có: \(\left|x\right|=1\)

TH1: \(\left|x\right|=-x\) với \(x< 0\)

Pt trở thành:

\(-x=1\) (ĐK: \(x< 0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

Thay \(x=-1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)

TH2: \(\left|x\right|=x\) với \(x\ge0\)

Pt trở thành:

\(x=1\left(tm\right)\) (ĐK: \(x\ge0\)

Thay \(x=1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)

c) \(A=\dfrac{1}{2}\) khi:

\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10=x-3\)

\(\Leftrightarrow x=-10+3\)

\(\Leftrightarrow x=-7\left(tm\right)\)

d) \(A\) nguyên khi:

\(\dfrac{-5}{x-3}\) nguyên

\(\Rightarrow x-3\inƯ\left(-5\right)\)

\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)

a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)

\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)

\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)

\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)

b: |x|=1

=>x=-1(loại) hoặc x=1(nhận)

Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)

c: A=1/2

=>x-3=-10

=>x=-7

d: A nguyên

=>-5 chia hết cho x-3

=>x-3 thuộc {1;-1;5;-5}

=>x thuộc {4;2;8;-2}

a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)

\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)

b: Ta có: |2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>x=-2

Thay x=-2 vào A, ta được:

\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)

c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)

=>x+3=24x+12

=>24x+12=x+3

=>23x=-9

hay x=-9/23

d: Để A<0 thì x+3<0

hay x<-3

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

Bài 9:

a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)

\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)

\(=3xy-y^2\)

\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)

b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)

\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)

\(=\dfrac{31}{2}\)

Bài 7: 

a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)

b) \(93\cdot107=100^2-7^2=10000-49=9951\)

c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)

d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)

e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(=18^8-18^8+1=1\)

f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)

21 tháng 11 2021

a) đã rút gọn
b) (x-3)(x+3)-(x-3)(x+1)
= (x-3)(x+3-x-1)
= (x-3)2

17 tháng 10 2021

\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)