K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

\(đkcđ\Leftrightarrow x\ge0\)

\(B=\frac{x+5}{\sqrt{x}+2}=\frac{x-4+9}{\sqrt{x}+2}=\frac{x-4}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}.\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{9}{\sqrt{x}+2}=\sqrt{x}-2+\frac{9}{\sqrt{x}+2}\)

\(=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\)

Áp dụng bđt Cô - si cho hai số dương \(\sqrt{x}+2\)và \(\frac{9}{\sqrt{x}+2}\), ta có :

\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2\sqrt{\frac{\left(\sqrt{x}+2\right).9}{\sqrt{x}+2}}\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge2.3\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge6-4\)

\(\Rightarrow\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-4\ge2\)

Hay \(B_{min}=2\)\(\Leftrightarrow\sqrt{x}+2=\frac{9}{\sqrt{x}+2}\)

\(\Rightarrow\sqrt{x}+2-\frac{9}{\sqrt{x}+2}=0\)

\(\Rightarrow\frac{\left(\sqrt{x}+2\right)^2-9}{\sqrt{x}+2}=0\)

\(\Rightarrow\left(\sqrt{x}+2\right)^2-3^2=0\)

\(\Rightarrow\left(\sqrt{x}+2-3\right)\left(\sqrt{x}+2+3\right)=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)=0\)

Vì \(\sqrt{x}+5>0\Rightarrow\sqrt{x}-1=0\)

\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)

\(KL:B_{min}=2\Leftrightarrow x=1\)

4 tháng 1 2018

Đề là \(M=\frac{x^2+y^2+3}{x+y+1}\) à bạn ??

4 tháng 1 2018

Không bạn, đề như mình ý

12 tháng 3 2019

\(y=\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)

Áp dụng BĐT Cô - si ta có :

\(\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}\ge2\sqrt{\frac{5x\left(1-x\right)}{x\left(1-x\right)}}=2\sqrt{5}\)

\(\Rightarrow y\ge5+2\sqrt{5}\)

Dấu \("="\) xảy ra khi \(x^2=5x^2-10x+5\Leftrightarrow4x^2-10x+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\frac{5+\sqrt{5}}{4}\\x_2=\frac{5-\sqrt{5}}{4}\end{matrix}\right.\)

27 tháng 3 2022

x - 921 = 1960

x = 1960 + 921

x = 2881

27 tháng 3 2022

:v ủa 921 đâu ra :D? 

NV
12 tháng 3 2019

\(y=\frac{x}{3}+\frac{5}{2x-1}=\frac{2x}{6}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\)

\(\Rightarrow y\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=\frac{\sqrt{30}}{3}+\frac{1}{6}\)

\(\Rightarrow P_{min}=\frac{\sqrt{30}}{3}+\frac{1}{6}\)

Dấu "=" xảy ra khi \(\left(2x-1\right)^2=30\Rightarrow x=\frac{\sqrt{30}+1}{2}\)