Bài 1:Tìm x,y.z
a)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và \(2x-3y+z=6\)
b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và \(x+y+z=49\)
c)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và \(2x+3y-z=50\)
d)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)
Bài 2:Chu vi một hình tam giác là 60cm.Các đường cao có độ dài là 12cm,15cm,20cm.Tính độ dài mỗi cạnh của tam giác đó.
Bài 3:Một xe ô tô khởi hành từ A,dự định chạy với tốc độ 60km/h thì sẽ tới B lúc 11 giờ.Sau khi chạy được 1 nửa đường thì vì đường hẹp và xấu nên vận tốc giảm xuống 40km/h do đó đến 11h thì xe vẫn còn cách B 40km.
a)Tính khoảng cách AB
b)Xe khởi hành lúc mấy giờ?
Làm đủ bước hộ mình nha!Thanks
#)Giải :
a) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất tỉ lệ thức :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\hept{\begin{cases}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{cases}\Rightarrow\hept{\begin{cases}x=27\\y=36\\z=60\end{cases}}}\)
Vậy x = 27; y = 36; z = 60
b) Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
\(\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}\Rightarrow\hept{\begin{cases}12x=216\\12y=192\\12z=180\end{cases}\Rightarrow}\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)
Vậy x = 18; y = 16; z = 15
\(a,\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x - 3y + z = 6
Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)
\(\Leftrightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
\(\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau : \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
Vậy : \(\hept{\begin{cases}\frac{2x}{18}=3\\\frac{3y}{36}=3\\\frac{z}{20}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=36\\z=60\end{cases}}\)
\(b,\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)