Tìm nghiệm
(2x-3)-2.(x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(P\left(x\right)+Q\left(x\right)=0\Leftrightarrow x^3-2x^2+3x+4-x^3+2x^2-2x-1=x+3=0\)
\(\Leftrightarrow x=-3\)
a. Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Thay x = 1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k), ta có:
2(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=69=232(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=\(\frac{6}{9}\)=\(\frac{2}{3}\)
Vậy khi thì phương trình có nghiệm x = 1
a, ĐK: \(-\dfrac{1}{2}\le x\le3\)
\(\sqrt{\left(1+2x\right)\left(3-x\right)}=2x^2-5x+3+m\)
\(\Leftrightarrow m=-2x^2+5x+3+\sqrt{-2x^2+5x+3}-6\left(1\right)\)
Đặt \(t=\sqrt{-2x^2+5x+3}\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2+t-6\)
\(f\left(0\right)=-6,f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{1+14\sqrt{2}}{8},f\left(-\dfrac{1}{2}\right)=-\dfrac{25}{4}\)
Yêu cầu bài thỏa mãn khi \(-\dfrac{25}{4}\le m\le\dfrac{1+14\sqrt{2}}{8}\)
Thấy số hơi lạ nên bạn thử tính lại nha, nhưng cơ bản là thế.
Câu b tương tự
\(2x^3+x^2+2x+1=0\)
\(\Leftrightarrow x^2\cdot\left(2x+1\right)+2x+1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x^2+1=0\left(VN\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Ta có: \(2x^3+x^2+2x+1=0\)
\(\Leftrightarrow x^2\left(2x+1\right)+\left(2x+1\right)=0\)
\(\Leftrightarrow2x+1=0\)
hay \(x=-\dfrac{1}{2}\)
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
Gửi nhầm nhé sorry
(2x - 3) - 2.(x + 1)
= 2x - 3 + (-2).x + (-2).1
= 2x - 3 - 2x - 2
= -5