K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(3^{n+2}+5.3^{n+1}=216\)                                                   b)\(3^{n+2}-3^{n+1}=1458\)

   \(3^{n+1}.3+5.3^{n+1}=216\)                                              \(3^{n+1}.3-3^{n+1}=1458\)

  \(3^{n+1}.\left(3+5\right)=216\)                                                    \(3^{n+1}.\left(3-1\right)=1458\)

  \(3^{n+1}.8=216\)                                                                   \(3^{n+1}.2=1458\)

  \(3^{n+1}=216:8=27\)                                                       \(3^{n+1}=1458:2=729\)

Ta có 27=33  mà 3n+1=27                                                                 ta có 36=729    mà  3n+1=729

 \(n+1=3\)                                                                                      \(n+1=6\)

\(n=2\)                                                                                        \(n=5\)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(2^{n+3}\cdot5^{n+3}=20^9\div2^9\)

`=>`\(\left(2\cdot5\right)^{n+3}=\left(20\div2\right)^9\)

`=>`\(10^{n+3}=10^9\)

`=>`\(n+3=9\)

`=> n = 9 - 3`

`=> n= 6`

Vậy, `n=6`

`b)`

\(3^{n+5}-3^{n+4}=1458\)

`=> 3^n*3^5 - 3^n*3^4 = 1458`

`=> 3^n*(3^5 - 3^4) = 1458`

`=> 3^n*162 = 1458`

`=> 3^n = 1458 \div 162`

`=> 3^n = 9`

`=> 3^n = 3^2`

`=> n=2`

Vậy, `n=2.`

`c)`

\(5^{n+3}+5^{n+2}=3750\)

`=> 5^n*5^3 + 5^n*5^2 = 3750`

`=> 5^n*(5^3+5^2) = 3750`

`=> 5^n*150 = 3750`

`=> 5^n = 3750 \div 150`

`=> 5^n =25`

`=> 5^n = 5^2`

`=> n=2`

Vậy, `n=2.`

`d)`

\(\dfrac{2}{7}x+\dfrac{3}{14}x=\dfrac{1}{2}\)

`=> 1/2x = 1/2`

`=> x = 1/2 \div 1/2`

`=> x=1`

Vậy, `x=1`

`e)`

\(\dfrac{x+2}{-3}=\dfrac{-2}{x+3}\)

`=> (x+2)(x+3) = -3*(-2)`

`=> (x+2)(x+3) = -6`

`=> x(x+3) + 2(x+3) = -6`

`=> x^2 + 3x + 2x + 6 = -6`

`=> x^2 + 5x + 6 - 6 = 0`

`=> x^2 + 5x = 0`

`=> x(x+5) = 0`

`=>`\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy, `x \in {0; -5}`

`@` `\text {Kaizuu lv u}`

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

NM
25 tháng 8 2021

Chắc có lẽ bạn định làm như này:

\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{3}{3\left(3n+2\right)\left(3n+5\right)}=\frac{\left(3n+5\right)-\left(3n+2\right)}{3\left(3n+2\right)\left(3n+5\right)}=\frac{1}{3}\left[\frac{1}{3n+2}-\frac{1}{3n+5}\right]\)

15 tháng 10 2023

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)

20 tháng 11 2017

Quy đồng lên rồi tính bình thường thôi bạn

3 tháng 1 2018

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}+\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}\left(\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right)=\frac{1}{3}\cdot\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)

P/s: pải c/m 1/2*5+1/5*8+.....+1/(3n-1)*(3n+2)=n/2*(3n+2) chứ