1) tìm phần nguyên của số hữu tỉ x biết
A) 2<x< 5 phần 2
B) âm 10 phần 3 < x < âm 3
C) âm 1 < x <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 11:
Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)
Vậy: \(a+7\inƯ\left(101\right)\)
\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)
\(a+7\in\left\{101;1;-101;-1\right\}\)
\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)
Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)
Bài 12:
Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)
t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)
Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)
Ta có \(-2< -\dfrac{4}{3}< -1\) nên \(\left[-\dfrac{4}{3}\right]=-2\).
\(0< \dfrac{1}{2}< 1\) nên \(\left[\dfrac{1}{2}\right]=0\).
toan nay la tu trong sach nang cao ra.hihi dung minh dang hoc quyen nay hehe
a)
Gọi x là số cần tìm, ta có:
\(x+2>0\left(x>0\right)\)
\(\Rightarrow x-4< 0\)
\(\Rightarrow x< 4\)
\(x=\left\{1;2;3\right\}\)
b)
Gọi x là số cần tìm, khi đó:
\(x-2< 0\left(x< 0\right)\)
\(x+4>0\left(\forall x>-4\right)\)
\(\Rightarrow x=\left(-3;-2;-1\right)\)
\(a)\)
Để x là số nguyên
\(\Rightarrow\frac{2}{2a+1}\)là số nguyên
\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)
Ta có:
2a+1 | -2 | -1 | 1 | 2 |
a | -3/2 | -1 | 0 | 1/2 |
So sánh điều điện a | Loại | TM | TM | Loại |
\(b)\)
Ta có:
\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên
\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)
\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)
\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)
\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)
\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)
\(-1,25=\frac{-125}{100}=\frac{-5}{4}\)
nên 0,6 và -1,25 là các số hữu tỉ
số hữu tỉ âm : \(\frac{-3}{7};\frac{1}{-5};-4\)
số không hữu tỉ âm cũng không phải hữu tỉ dương là \(\frac{0}{-2}\) ( vì kết quả bằng 0 )
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm