Giải phương trình trùng phương sau:
\(5x^4+3x^2+4=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-13x^2+36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)
b) \(5x^4+3x^2-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))
c: Ta có: \(2x^4+3x^2+2=0\)
Đặt \(a=x^2\)
Phương trình tương đương là: \(2a^2+3a+2=0\)
\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)
Vì Δ<0 nên phương trình vô nghiệm
Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
nhớ like
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
Đặt: \(x^2=t\)
Sao đó giải như pt bậc 2 bình thường
cops mạng đâu thế :((